Some Basic Concepts of Chemistry Important Questions With Answers

NEET Chemistry 2023

1. Which one of the following has maximum number of atoms:
a) 1 g of Ag
(s) Atomic mass of $\mathrm{Ag}=108$
b) 1 g of O_{2}
(g) Atomic mass of $\mathrm{O}=16$
c) $\mathbf{1 g}$ of Li (s) Atomic mass of $\mathrm{Li}=\mathbf{7}$
d) 1 g of Mg (s) Atomic mass of $\mathrm{Mg}=24$

Solution:-

Atomic mass of $\mathrm{Li}=7$
(1) No.of atoms of $\mathrm{O}_{2}(\mathrm{~g})=\frac{1}{32} \times 2 \times N_{A}$
(2) No. of atoms of $\mathrm{Li}(\mathrm{s})=\frac{1}{7} \times N_{A}$
(3) No. of atoms of $\mathrm{Ag}(\mathrm{s})=\frac{1}{108} \times N_{A}$
(4) No. of atoms of $\mathrm{Mg}(\mathrm{s})=\frac{1}{24} \times N_{A}$
$\therefore 1 \mathrm{~g}$ of Li has maximum number of atoms.
2. Mole fraction of the solute in a 1.00 molal aqueous solution is :
a) 0.0177
b) 0.0344
c) 1.7700
d) 0.1770

Solution : -

Mole fraction of a solute
$=\frac{\text { Number of moles of solute }}{\text { Total number of moles of solute and solvent }}$
Now, 1 molal aqueous solution means 1 mole of solute in 1000 g of water.
Number of moles of water in 1000 g
$=\frac{1000 \mathrm{~g}}{18 \mathrm{gmol}^{-1}}=55.56 \mathrm{~mol}$
Thus, mole fraction of solute
$=\frac{\text { Number of moles of solute }}{\text { Number of moles of solute }}+$ Number of moles of water
$=1 / 1+55.56$
$=0.0177$
3. Which of the following rules regarding the significant figures and calculations involving them is not correct?
a)

The result of an addition or subtraction is reported to the same number of decimal places as present in number with least decimal places
b)

Result of multiplication or division should have same number of Significant figures as present in most precise figure.
c)

The result of multiplication or division should be rounded off to same number of significant figures as present in least precise figure.
d) The non-significant figures in the measurements are rounded off.

Solution : -

Answer to a multiplication or division is rounded off to the same number of significant figures as possessed by the least precise term in the calculation.
4. A metal oxide has the formula $\mathrm{Z}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic weight of the metal is :
a) 27.9
b) 159.6
c) 79.8
d) 55.8

Solution : -

$\mathrm{Z}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Z}+3 \mathrm{H}_{2} \mathrm{O}$
Let the atomic weight of the metal Z be x.
Molecular mass of $\mathrm{Z}_{2} \mathrm{O}_{3}=2 x+3$ (16)
$=2 x+48 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of 0.1596 g of $\mathrm{Z}_{2} \mathrm{O}_{3}=\frac{0.1596}{2 x+48} \mathrm{~mol}$
Number of moles of 6 mg or 0.006 g of $\mathrm{H}_{2}=\frac{0.006}{2}=0.003 \mathrm{~mol}$
According to the balanced chemical equation, the molar ratio of $\mathrm{Z}_{2} \mathrm{O}_{3}$ and H_{2} should be 1:3.
Thus, $\left(\frac{0.1596}{2 x+48}\right)\left(\frac{1}{0.003}\right)=\frac{1}{3}$
$\Rightarrow 159.6=2 x+48 \Rightarrow 111.6=2 x$
$\Rightarrow \mathrm{x}=55.8 \mathrm{~g} \mathrm{~mol}^{-1}$
5. The number of significant figures for the three numbers $161 \mathrm{~cm}, 0.161 \mathrm{~cm}, 0.0161 \mathrm{~cm}$ are:
a) 3,4 and 5 respectively
b) 3,4 and 4 respectively
c) 3, 3 and 4 respectively
d) 3, 3, and 3 respectively

Solution:-

(i) All non zero digits are significant.
(ii) Non zero digits to the right of the decimal point are significant.
(iii) Zeroes to the left of the first non-zero digits in a number are not significant.

So, the number of significant figures for the numbers $161 \mathrm{~cm}, 0.161 \mathrm{~cm}$ and 0.0161 cm are same i.e., 3
6. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with cone. $\mathrm{H}_{2} \mathrm{SO}_{4}$, The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be :
a) 1.4
b) 3.0
c) 2.8
d) 4.4

Solution:-
$\mathrm{HCOOH} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { Dehydrating agent }} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
($\mathrm{H}_{2} \mathrm{O}$ absorbed by $\mathrm{H}_{2} \mathrm{SO}_{4}$)
Initial moles $=\frac{2.3}{46}=\frac{1}{20} \rightarrow 0+0$
Final moles $=0 \rightarrow \frac{1}{20}+\frac{1}{20}$
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
[$\mathrm{H}_{2} \mathrm{O}$ absorbed by $\mathrm{H}_{2} \mathrm{SO}_{4}$]
Initial moles $=\frac{4.5}{90}=\frac{1}{20} \longrightarrow 0+0+0$
Final moles $=0 \rightarrow \frac{1}{20}+\frac{1}{20}+\frac{1}{20}$
CO_{2} is absorbed by KOH , so the remaining product is only CO .
Moles of CO formed from both reactions,
$=\frac{1}{20}+\frac{1}{20}=\frac{1}{10}$
Remaining mass of $\mathrm{CO}=$ Moles \times Molar mass
So, $=\frac{1}{10} \times 28=2.8$
7. In the reaction, $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ When 1 mole of ammonia and 1 mole of O_{2} are made to react to completion, then:
a) 1.0 mole of $\mathrm{H}_{2} \mathrm{O}$ is produced
b) 1.0 mole of NO will be produced
c) all the oxygen will be consumed
d) all the ammonia will be consumed

Solution : -

According to the given equation, if the initial volume of NH_{3} and O_{2} both are same, i.e., 1 mole then O_{2} is limiting reagent.

Thus, all the oxygen gas is consumed in the reaction.
8. The mass of one mole of a substance in grams is called its
a) molecular mass
b) molar mass
c) Avogadro's mass
d) formula mass

Solution : -
The mass of one mole of a substance in a gram is called its molar mass.
9. What will be the molarity of the solution in which 0.365 g of HCl gas is dissolved in 100 mL of solution?
a) 2 M
b) 0.2 M
c) 1 M
d) 0.1 M

Solution : -

No. of moles in 0.365 g of $\mathrm{HCl}=\frac{0.365}{36.5}=0.01$
Volume of solution in $\mathrm{L}=\frac{100}{1000}=0.1 \mathrm{~L}$
Molarity $=\frac{n}{V(i n \quad L)} \frac{0.01}{0.1}=0.1 M$
10. Two students performed the same experiment separately and each one of them recorded two readings of mass which are given below. Correct reading of mass is 3.0 g . On the basis of given data, mark the correct option out of the following statements.

StudentReadings

	(i)	(ii)
A	3.01	2.99
B	3.05	2.95

a) Results of both the students are neither accurate nor precise.
b) Results of student A are both precise and accurate.
c) Results of student B are neither precise nor accurate.
d) Results of student B are both precise and accurate.

Solution:-

Student A
Average reading $=\frac{3.01+2.99}{2}=3.0 \mathrm{~g}$
Student B : Average reading $=\frac{3.05+2.95}{2}=3.0 \mathrm{~g}$
For both the students A and B, average reading is close to the correct reading (i.e., 3.0 g). Hence, both recorded by student A are more precise as they differ only by ± 0.01, whereas readings recorded by the student B are differ by ± 0.05. Thus, the results of student A are both precise and accurate.
Precision refers to the closeness of various measurements for the same quantity and accuracy is the agreement of a perticular value to the true value of the results. Results of student A are very close to 3 g .
11. What will be the weight of CO having the same number of oxygen atoms as present in 22 g of CO_{2} ?
a) $\mathbf{2 8} \mathrm{g}$
b) 22 g
c) 44 g
d) 72 g

Solution : -

No. of O atoms in $\mathrm{CO}_{2}=2$
Molar mass of $\mathrm{CO}_{2}=44 \mathrm{~g}$
$44 \mathrm{~g} \equiv 1 \mathrm{~mol} \Rightarrow 22 \mathrm{~g} \equiv 0.5 \mathrm{~mol}$
1 mole of CO_{2} contains $=2 \times 6.023 \times 10^{23} \mathrm{O}$ atoms
0.5 mole of $\mathrm{CO}_{2}=6.023 \times 10^{23} \mathrm{O}$ atoms

1 mole of $\mathrm{CO}=6.023 \times 10^{23} \mathrm{O}$ atoms
Mass of 1 mole of CO $=12+16=28 \mathrm{~g}$
12. If 500 mL of a 5 M solution is diluted to 1500 ml , what will be the molarity of the solution obtained?
a) 1.5 M
b) 1.66 M
c) 0.017 M
d) 1.59 M

Solution:-
$M_{1} V_{1}=M_{2} V_{2}$
$5 \mathrm{M} \times 500 \mathrm{~mL}=\mathrm{M}_{2} \times 1500 \mathrm{~mL}$
$\therefore M_{2}=\frac{5 \times 500}{1500}=1.66 M$
13. The number of moles of oxygen in 1 L of air containing 21% oxygen by volume, under standard conditions, is :
a) 0.0093 mole
b) 2.10 moles
c) 0.186 mole
d) 0.21 mole

Solution : -

1 L of air contains 21% oxygen by volume.
So, volume of oxygen $=\frac{21}{100} \times 1 \mathrm{~L}=0.21 \mathrm{~L}$
Now, at STP, 22.4 L of oxygen gas contains 1 mole
So, 0.21 L of oxygen gas contains $=\frac{1}{22.4} \times 0.21 \mathrm{~mol}$
$=9.3 \times 10^{-3} \mathrm{~mol}$
$=0.0093 \mathrm{~mol}$
14. If the density of a solution is $3.12 \mathrm{~g} \mathrm{~mL}^{-1}$, the mass of 1.5 mL solution in significant figures is \qquad -.
a) 4.7 g
b) $4680 \times 10^{-3} \mathrm{~g}$
c) 4.680 g
d) 46.80 g

Solution : -

Density $=\frac{\text { Mass }}{\text { volume }}$
\therefore Mass $=$ Density x Volume
$=3.12 \mathrm{~g} \mathrm{~mL}^{-1} \times 1.5 \mathrm{~mL}=4.68 \mathrm{~g}=4.7 \mathrm{~g}$
15. An element, X has the following isotopic composition ${ }^{200} X: 90 \%,{ }^{199} \mathrm{X}: 8.0 \%,{ }^{202} \mathrm{X}: 2.0 \%$. The weighted average atomic mass of the naturally occurring element X is closest to :
a) 201 amu
b) 202 amu
c) 199 amu
d) $\mathbf{2 0 0} \mathbf{a m u}$

Solution : -
Contribution of ${ }^{200} \mathrm{X}$ in average atomic weight
$=0.90 \times 200$
$=180.00 \mathrm{amu}$
Contribution of ${ }^{199} \mathrm{X}$ in average atomic weight
$=0.08 \times 199$
$=15.92 \mathrm{amu}$
Contribution of ${ }^{202} \mathrm{X}$ in average atomic weight
$=0.02 \times 202$
$=4.04 \mathrm{amu}$
Thus, weighted average atomic mass of X
$=(180.00+15.92+4.04) \mathrm{amu}$
$=199.96 \mathrm{amu}$
$\approx 200 \mathrm{amu}$
16. 1 g of Mg is burnt in a closed vessel containing 0.5 g of O_{2}. Which reactant is limiting reagent and how much of the excess reactant will be left?
a) O_{2} is a limiting reagent and Mg is in excess by 0.25 g . b) Mg is a limiting reagent and is in excess by 0.5 g .
c) 0_{2} is a limiting reagent and is in excess by 0.25 g .
d) $\mathbf{0}_{2}$ is a limiting reagent and $\mathbf{M g}$ is in excess by 0.75 g .

Solution : -

$\underset{2 \times 24}{2 \mathrm{Mg}}+\underset{2 \times 16}{\mathrm{O}_{2}} \longrightarrow \underset{2(24+16)}{2 \mathrm{Mgo}}$
48 g of Mg requires 32 g of O_{2}
1 g of Mg requires $\frac{32}{48}=0.66 \mathrm{~g}$ of O_{2}
Oxygen available $=0.5 \mathrm{~g}$
Hence, $0 z$ is limiting reagent.
32 g of 0 z reacts with 48 g of Mg
0.5 g of 0 z will react with $\frac{48}{32} \times 0.5=0.75 \mathrm{~g}$ of Mg

Excess of $\mathrm{Mg}=(1.0-0.75)=0.25 \mathrm{~g}$
17. In an experiment, 2.4 g ofiron oxide on reduction with hydrogen gave 1.68 g of iron. In another experiment, 2.7 g of iron oxide gave 1.89 g of iron on reduction. Which law is illustrated from the above data?
a) Law of constant proportions
b) Law of multiple proportions
c) Law of reciprocal proportions
d) Law of conservation of mass

Solution : -

In first experiment,
Mass of iron oxide $=2.4 \mathrm{~g}$
Mass of iron $=1.68 \mathrm{~g}$
Mass of oxygen $=2.4-1.68=0.72$
Ratio of masses of iron and oxygen $=\frac{1.68}{0.72}=7: 3$
In second experiment,
Mass of iron oxide $=2.7 \mathrm{~g}$
Mass of iron $=1.89 \mathrm{~g}$
Mass of oxygen $=2.7-1.89=0.81$
Ratio of masses of iron and oxygen $=\frac{1.89}{0.81}=7: 3$
The same ratio confirms that these experiments clarify Law of constant proportions.
18. Specific volume of cylindrical virus particle is $6.02 \times 10^{-2} \mathrm{cc} / \mathrm{gm}$. Whose radius and length 6 A respectively. If $\mathrm{N}_{\mathrm{A}}=$ 6.02×10^{23}, find molecular weight of virus
a) $3.08 \times 10^{3} \mathrm{~kg} / \mathrm{mol}$
b) $3.08 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
c) $1.54 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
d) $15.4 \mathrm{Kg} / \mathrm{mol}$

Solution:-

Given specific volume (volume of 1 gm) of cylindrical virus particle
$=6.02 \times 10^{-2} \mathrm{cc} / \mathrm{gm}$
and radius of virus
$=7 A A=7 \times 10^{-8} \mathrm{~cm}$
$\because 1 A A=10^{-8} \mathrm{~cm}$
Length of virus $=10 \times 10^{-8} \mathrm{~cm}$
Then volume of virus $=\pi r^{2} l$
(i)

Put the value in (i)
$\pi r^{2} l=\frac{22}{7} \times\left(7 \times 10^{-8}\right)^{2} \times 10 \times 10^{-8}$
$=\frac{\text { volume }}{\text { specific volume }}$
$=\frac{154 \times 10^{-23}}{0.02 \times 10^{-2}} \times 6.02 \times 10^{23}$
$=15400 \mathrm{~g} / \mathrm{mol}=15.4 \mathrm{~kg} / \mathrm{mol}$
19. Chlorine gas is prepared by reaction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with MnO_{2} and NaCl . What volume of Cl_{2} will be produced at STP if 50 g of NaCl is taken in the reaction?
a) 1.915 L
b) 22.4 L
c) 11.2 L
d) 9.57 L

Solution : -

$2 \mathrm{NaCl}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2 moles 1 mole
$(2 \times 58.5=117 \mathrm{~g}) 22.4 \mathrm{~L}$ (STP)
117 g of $\mathrm{NaCl} \equiv 22.4 \mathrm{~L}$ of Cl_{2}
50 g of $\mathrm{NaCl} \equiv \frac{22.4}{117} \times 50=9.57 \mathrm{~L}$ of Cl_{2} at STP
20. Assertion: Scientific notation for the number 100 is expressed as 1×10^{2}.

Reason: The number 1×10^{2} has two significantfigures
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false. d) If both assertion and reason are false.

Solution : -

The terminal zeros are not Significant if there is no decimal point. Hence, the number 1×10^{2} has only one Significant figure.
21. Match the column I with column II and mark the appropriate choice

	Column - I		Column - II
(A)	Mass of H_{2} produced when 0.5 mole of zinc reacts with excessof HCl	(i)	3.01×10^{23} molecules
(B)	Mass of all atoms of a compound with formula $\mathrm{C}_{2} \mathrm{H}_{22}$	(ii)	6.023×10^{23} molecules

	Column - I		Column - II
(C)	Number of molecules in 35.5 g of Cl_{2} (iii)	$1.43 \times 10^{-21} \mathrm{~g}$	
(D)	Number of molecules in 64 g of SO_{2}	(iv)	1 g

a) (A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (iii)
b) (A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)
c) $(\mathrm{A}) \rightarrow$ (iv), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (ii)
d) (A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)

Solution : -
$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl} 2+\mathrm{H}_{2}$
1 mole of Zn produces 2 g of H_{2}
0.5 mole of Zn will produce 1 g of H_{2}.
(B): $\mathrm{C}_{70} \mathrm{H}_{22}$

Molar mass $=862$
Mass of atoms $=862 / 6.023 \times 10^{23}=1.43 \times 10^{-21} \mathrm{~g}$
(C) : 71 g of $\mathrm{Cl}_{2}=6.023 \times 10^{23}$ molecules
35.5 g of $\mathrm{Cl}_{2}=3.01 \times 10^{23} \mathrm{molecules}$
(D) : Molar mass of S02 = 64 = 1 mole

64 g of $\mathrm{SO}_{2}=6.023 \times 10^{23}$ molecules
22. What will be the answer in appropriate significant figures as a result of addition of 3.0223 and 5.041 ?
a) 80.633
b) 8.0633
c) $\mathbf{8 . 0 6 3}$
d) 806.33

Solution : -

3.0223

+ 5.041
8.0633

Since, 5.041 has only 3 digits after the decimal point, the result should be reported to 3 digits after decimal point.
23. Which has maximum number of molecules?
a) $7 \mathrm{~g} \mathrm{~N}_{2}$
b) $\mathbf{2} \mathbf{g ~ H}_{2}$
c) $16 \mathrm{~g} \mathrm{NO}_{2}$
d) $16 \mathrm{~g} \mathrm{O}_{2}$

Solution : -

Different gases with the same number of moles have the same no. of molecules which is equal to the Avogadro's number i.e., 6.022×10^{23}

Explanation

Number of moles,
step 1: the number of moles of $7 \mathrm{gN}_{2}$,
Molar mass of $\mathrm{N}_{2}=28 \mathrm{~g} / \mathrm{mol}$
Number of moles $=\frac{\mathrm{W} \text { eight of } \mathrm{N}_{2}}{\text { Molecular weight of } \mathrm{N}_{2}}=\frac{7}{28}=0.25 \mathrm{moles}$
Step 2: the number of moles $2 \mathrm{gH}_{2}$,
Molar mass of $\mathrm{H}_{2}=2 \mathrm{~g} / \mathrm{mol}$
Number of moles $=\frac{\mathrm{W} \text { eight of } \mathrm{H}_{2}}{\text { Molecular weight of } \mathrm{H}_{2}}=\frac{2}{2}=1$ mole
Step 3: the number of moles of $16 \mathrm{gNO}_{2}$,
Molar mass of $\mathrm{NO}_{2}=14+2 \times 16=46 \mathrm{~g} / \mathrm{mol}$
Number of moles $=\frac{\mathrm{W} \text { eight of } \mathrm{NO}_{2}}{\text { Molecular weight of } \mathrm{NO}_{2}}=\frac{16}{46}=0.347 \mathrm{moles}$
Step 4: the number of moles of $7 \mathrm{gO}_{2}$,
Molar mass of $\mathrm{O}_{2}=2 \times 16=32 \mathrm{~g} / \mathrm{mol}$
Number of moles $=\frac{\mathrm{W} \text { eight of } \mathrm{O}_{2}}{\text { Molecular weight of } \mathrm{O}_{2}}=\frac{16}{32}=0.5 \mathrm{moles}$
Thus, H_{2} has the maximum number of moles, hence it has maximum number of molecules.
24. What is the mass per cent of oxygen in ethanol?
a) 52.14%
b) 13.13%
c) 16%
d) $\mathbf{3 4 . 7 3 \%}$

Solution : -

Molecular formula of ethanol $=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Molar mass of ethanol $=2 \times 12.01+6 \times 1.008+16$
$=46.068 \mathrm{~g}$
Mass per cent of oxygen $=\frac{16}{46.068} \times 100=34.73 \%$
25. Assertion : One atomic mass unit is defined as one twelfth of the mass of one carbon -12 atom.

Reason : Carbon-12 isotope is the most abundant isotope of carbon and has been chosen as standard. One atomic mass unit is defined as one twelfth of the mass of one carbon-12 atom.
a) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
b) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
c) Assertion is correct but Reason is incorrect d) Both Assertion and Reason are incorrect

Solution : -

One atomic mass unit is defined as one-twelfth of the mass of one carbon - 12 atom because $\mathrm{C}-12$ is chosen as the standard atom. This is because it has the equal number of protons and neutrons (6) and constitutes most of the matter.
The most abundant isotope of carbon is Carbon - 12.
Thus both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
26. Chemical reactions involve interaction of atoms and molecules. A large number of atoms $/ \mathrm{molecules}$ (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical! electrochemical reaction, which requires a clear understanding of the mole concept.
A 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass: $\mathrm{Na}=23, \mathrm{Hg}=200$; Ifaraday $=96500$ coulombs). If the cathode is a Hg electrode, the maximum weight (g) of amalgam formed from this solution is
a) 200
b) 225
c) 400
d) 446

Solution:-

Number of moles of $\mathrm{Na}^{+}=2$
$2 \mathrm{NaCl} \equiv 2 \mathrm{Na}$
$\underset{2}{\mathrm{Na}} \mathrm{a}+\underset{2}{\mathrm{Hg}} \longrightarrow \mathrm{Na} \underset{2}{ }(\mathrm{Hg})$
By electrolysis we can get a maximum of 2 moles of sodium which can combine with exactly 2 moles of mercury to give 2 moles of amalgam.
\therefore Maximum weight of Na amalgam (assuming equimolar Na and Hg) $=46+400=446 \mathrm{~g}$.
27. In which case is the number of molecules of water maximum?
a) 18 mL of water
b) 0.18 g of water
c) 0.00224 L of water vapours at 1 atm and 273 K
d) $10^{-3} \mathrm{~mol}$ of water

Solution : -

The maximum number of water molecules corresponds to the maximum number of moles of water.
0.00224 L of water vapours at 1 atm and 273 K corresponds to :
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \mathrm{~atm} \times 0.00224 \mathrm{~L}}{0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{molK} \times 273 \mathrm{~K}}=1.07 \times 10^{-4} \mathrm{~mol}$
18 mL of water (density $1 \mathrm{~g} / \mathrm{mL}$) corresponds to :
$18 \mathrm{~mL} \times \frac{1 \mathrm{~g} / \mathrm{mL}}{18 \mathrm{~g} / \mathrm{mol}}=1 \mathrm{~mol}$
0.18 g of water corresponds to :
$\frac{0.18 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=0.01 \mathrm{~mol}$
18 mL of water has maximum number of moles which corresponds to maximum number of molecules $\$ \$$.
28. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is :
a) 0.02 M
b) 0.01 M .
c) 0.001 M
d) 0.1 M

Solution : -

6.023×10^{23} molecules of urea are present in 1 mole.
6.023×10^{20} molecules of urea are present in
$(1$ mole $/ 6.023) \times 10^{23} \times 6.023 \times 10^{20}=10^{-3}$ moles
Volume of solution $=100 \mathrm{~mL}=0.1 \mathrm{~L}$
Molarity of urea solution $=$ No. of moles of urea/Volume of solution
$=10^{-3}$ moles $/ 0.1 \mathrm{~L}$
$=10^{-2}$ or $0.01 \mathrm{~mol} \mathrm{~L}^{-1}$ or 0.01 M
29. Which set of figures will be obtained after rounding up the following up to three significant figures?
$34.216,0.04597,10.4107$
а) $34.3,0.0461,10.4$
b) $34.2,0.0460,10.4$
c) $34.20,0.460,10.40$
d) $34.21,4.597,1.04$

Solution:-

To round up a given number, ignore the last digit as such if the digit next to it is less than 5 . Then increase it by 1 , if the next digit is greater than 5 .
(i) 34.216
34.22 \{ since next digit (6) is greater than 5 \}
34.2 \{since next digit (2) is less than 5 \}
(ii) 0.04597
0.0460 \{since next digit (7) is greater than 5$\}$
(iii) 10.4107
10.411 \{ since next digit (7) is greater than 5 \}
10.41 \{ since next digit (1) is less than 5 \}
10.4 \{ since next digit (1) is less than 5 \}
30. Assertion: Components of a homogeneous mixture cannot be separated by using physical methods.

Reason: Composition of homogeneous mixture is uniform throughout as the components react to form a single compound.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false. d) If both assertion and reason are false.

Solution : -

In homogeneous mixture, the components completely mix with each other and hence the composition is uniform throughout. Formation of homogeneous mixture is a physical change as no chemical reaction occurs between the components and no new compound is formed, hence the components can be separated by physical methods.
31. A mixture of gases contains of H_{2} and O_{2} gases in the ratio of $1: 4(\mathrm{w} / \mathrm{w})$. What is the molar ratio of the two gases in the mixture?
a) 4: 1
b) $16: 1$
c) 2: 1
d) $1: 4$

Solution:-

A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(\mathrm{w} / \mathrm{w})$.
Let 100 g of hydrogen and 400 g of oxygen are present.
The molar masses of hydrogen and oxygen are $2 \mathrm{~g} / \mathrm{mol}$ and $32 \mathrm{~g} / \mathrm{mol}$ respectively.
The number of moles of hydrogen present are $\frac{100}{2}=50 \mathrm{~mol}$.
The number of moles of oxygen present are $\frac{400}{32}=12.5 \mathrm{~mol}$.
The molar ratio of the two gases in the mixture is $50: 12.5$ or $4: 1$.
32. Boron has two stable isotopes, ${ }^{10} \mathrm{~B}(19 \%)$ and ${ }^{11} \mathrm{~B}(81 \%)$. Average atomic weight for boron in the periodic table is:
a) 10.8
b) 10.2
c) 11.2
d) 10.0

Solution : -

Average atomic weight $=\frac{\sum \% \text { abundant } \times \text { atomic mass }}{100}$
$=\frac{19 \times 10+81 \times 11}{100}=10.81$
33. Mark the rule which is not correctly stated about the determination of significant figures.
a) Zeros preceding to first non-zero digit are not significant.
b) Zeros preceding to first non-zero digit are not significant.
c) Zeros at the end or right of the number are significant if they are on the right side of decimal point.
d) All non-zero digits are significant.
34. Assertion: Solids have definite volume and shape.

Reason: In solids, the constituent particles are very close to each other and there is not much freedom of movement
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion
c) If assertion is true but reason is false.
d) If both assertion and reason are false.

Solution : -

Solids have definite volume and shape because the constituent particles are very close to each other and there is not much freedom of movement. Both Assertion and Reason are correct and related.
35. 1.4 moles of phosphorus trichloride are present in a sample. How many atoms are there in the sample?
a) 5.6
b) 34
c) 2.4×10^{23}
d) 3.372×10^{24}

Solution : -

$1 \mathrm{~mol} \mathrm{PCl}_{3}=6.022 \times 10^{23}$ molecules
$1.4 \mathrm{~mol} \mathrm{PCl}_{3}=1.4 \times 6.022 \times 10^{23}=8.43 \times 10^{23}$ molecules
Number of atoms present in 1 molecule of $\mathrm{PCl}_{3}=4$
Number of atoms in 8.43×10^{23} molecules of $\mathrm{PCl}_{3}=4 \times 8.43 \times 10^{23}$ atoms
$=33.72 \times 10^{23}$
$=3.372 \times 10^{24}$ atoms
36. Which of the following options is not correct?
a) $2.300+0.02017+0.02015=2.340$
b) 126, 000 has 3 Significant figures
c) $15.15 \mu \mathrm{~s}=1.515 \times 10^{-5} \mathrm{~s}$
d) $0.0048=48 \times 10^{-3}$

Solution : -

$2.300+0.02017+0.02015=2.3432$
Rule: The result of an addition or subtraction is reported to the same number of decimal places as present in number with the least decimal places.
Since the least precise number is 2.300 and that has three digits after the decimal, therefore the result of the above addition is rounded off to three decimal figures as 2.340 .
126,000 has 3 significant figures as zeros are not counted
$15.15 \mu \mathrm{~s}=15.15 \times 10^{-6} \mathrm{~s}=1.515 \times 10^{-5} \mathrm{~s}$
$0.0048=4.8 \times 10^{-3}$
37. 0.24 g of a volatile gas. upon vapourisation. gives 45 mL , vapour at NTP. What will be the vapour density of the substance? (Density of $\mathrm{H}_{2}=0.089$)
a) 95.93
b) 59.93
c) 95.39
d) 5.993

Solution : -

Weight of gas $=0.24 \mathrm{~g}$
Volume of gas $(\mathrm{V})=45 \mathrm{~mL}=0.045 \mathrm{~L}$
Density of $\mathrm{H}_{2}(\mathrm{~d})=0.089$
Weight of 45 mL of $\mathrm{H}_{2}=\mathrm{V} \times \mathrm{d}=0.045 \times 0.089$
$=4.005,10^{-3} \mathrm{~g}$
Therefore, vapour density
$=\frac{\text { Weight of certain volume of substance }}{\text { Weight of same volume of hydrogen }}$
$=\frac{0.24}{4.005 \times 10^{-3}}=59.93$
38. What quantity of copper oxide will react with 2.80 L of hydrogen at NTP?
a) 79.5 g
b) 2 g
c) 9.9 g
d) 22.4 g

Solution : -

$\underset{79.5 \mathrm{~g}}{\mathrm{CuO}}+\underset{22.4 \mathrm{~L}}{\mathrm{H}_{2}} \longrightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
22.4 L of $\mathrm{H}_{2} \equiv 79.5 \mathrm{~g}$ of CuO
2.80 L of $\mathrm{H}_{2} \equiv \frac{79.5}{22.4} \times 2.80=9.9 \mathrm{~g}$ of CuO
39. In a mixture of gases, the volume content of a gas is 0.06% at STP. Calculate the number of molecules of the gas in 1 L of the mixture.
a) 1.613×10^{23}
b) 6.023×10^{23}
c) 1.61×10^{27}
d) 1.61×10^{19}

Solution : -

Volume of gas in $1 \mathrm{~L}=\frac{0.06}{100}=6 \times 10^{-4} \mathrm{~L}$
Number of molecules of $\mathrm{CO}_{2}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}$
$\frac{6 \times 10^{-4}}{22.4} \times 6.023 \times 10^{23}=1.61 \times 10^{19}$
40. An organic compound on analysis gave the following results: $\mathrm{C}=54.5 \%, \mathrm{O}=36.4 \%, \mathrm{H}=9.1 \%$. The Empirical formula of the compound is
a) CHO_{2}
b) $\mathrm{CH}_{2} \mathrm{O}$
c) $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}$
d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Solution:-
Element\% No.of moles Mole radio Whole no.radio

C	$54.554 / 12=4.54$	$4.54 / 2.27$	2
H	9.1	$9.1 / 1=9.1$	$9.1 / 2.27$
O	$36.436 .4 / 16=2.272 .27 / 2.27$	1	

Hence Empirical formula of the compound is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.
41. What will be the molality of chloroform in the water sample which contains 15 ppm chloroform by mass?
a) $1.25 \times 10^{-4} \mathrm{~m}$
b) $2.5 \times 10^{-4} \mathrm{~m}$
c) $1.5 \times 10^{-3} \mathrm{~m}$
d) $1.25 \times 10^{-5} \mathrm{~m}$

Solution : -

$15 \mathrm{ppm}=\frac{15}{10^{6}} \times 10^{2}=1.5 \times 10^{-3} g$
Molality of CHCl_{3} solution $=\frac{1.5 \times 10^{-3}}{100} \times \frac{1000}{119.5}$
$=1.25 \times 10^{-4} \mathrm{~m}$
42. Assertion: The mass of a substance is constant whereas its weight may vary from one place to another.

Reason : Mass of a substance is the amount of matter present in it while weight is the force exerted by gravity on an object.
a) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
b) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
c) Assertion is correct but Reason is incorrect
d) Both Assertion and Reason are incorrect

Solution:-

The weight of a substance may vary from one place to another due to change in gravity but mass of any substance remains the same.
43. The number of water molecules is maximum in:
a) 1.8 gram of water
b) 18 gram of water
c) $\mathbf{1 8}$ moles of water
d) 18 molecules of water

Solution:-

Molecular mass of water is $18 \mathrm{~g} / \mathrm{mole}$ So, 1 mole or 18 g of water contains 6.023×10^{23} molecules.
1.8 g of water contains $=\frac{6.023 \times 10^{23} \times 1.8 \text { molecules }}{18}$
$=6.023 \times 10^{22}$ molecules
18 moles of water contain $6.023 \times 10^{23} \times 18$ molecules.
Thus, 18 moles of water contain maximum number of molecules.
44. Which of the following is dependent on temperature?
a) Molality
b) Molarity
c) Mole fraction
d) Weight percentage

Solution : -

Molality $=\frac{\text { Number of moles of solute }}{\text { Mass of solvent }(\text { in } \mathrm{kg})}$
Mole fraction $=\frac{\text { Number of moles of solute }}{\text { Volume of solution }(\text { in } L)}$
Weight percentage $=\frac{\text { Weight of a component }}{\text { Total weight of solution }} \times 100$
Among the above concentration units, only molarity depends on the volume of the solution which increases with increasing temperature and decreases with decreasing temperature. Rest of the three terms either depends on number of components or weight of components which are independent of temperature.
45. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}_{3}$? The concentrated acid is $70 \% \mathrm{HNO}_{3}$.
a) 45.0 g conc. HNO_{3}
b) 90.0 g conc. HNO_{3}
c) 70.0 g conc. HNO_{3}
d) 540 g conc. HNO_{3}

Solution : -

Molarity of a solution $=\frac{\text { Mass o fsolute }}{\text { Molecular weight of solutex } \operatorname{Volume}(\text { in } L)}$
Let mass of HNO_{3} in solution be m.
Molarity of HNO_{3} solution $=2$
Molecular weight of $\mathrm{HNO}_{3}=1+14+3$ (16)
$=63 \mathrm{~g} \mathrm{~mol}^{-1}$
Volume of solution $=250 \mathrm{~mL}=0.25 \mathrm{~L}$
Thus, putting these values in eqn. (i), we get
$2=\frac{m}{63 \times 0.25} \Rightarrow \mathrm{~m}=2 \times 63 \times 0.25$
$\mathrm{m}=31.5 \mathrm{~g}$
Now, if concentrated HNO_{3} is 100% then it requires 31.5 g .
But the original solution of HNO_{3} is 70% concentrated. Hence, the mass of HNO_{3} required to produce 2.0 M solution $=\frac{100}{7} \times 31.5 \mathrm{~g}$
$=45.0 \mathrm{~g}$ of HNO_{3}
46. What is the mass of carbon dioxide which contains the same number of molecules as are contained in 40 g of oxygen?
a) 40 g
b) 55 g
c) 32 g
d) 44 g

Solution : -

Molar mass of $\mathrm{O}_{2}=32 \mathrm{~g} \mathrm{~mol}^{-1}$
32 g of $\mathrm{O}_{2}=6.023 \times 10^{23}$ molecules
40 g of $\mathrm{O}_{2}=\frac{6.023 \times 10^{23} \times 40}{32}=7.529 \times 10^{23}$ molecules
Mass of 6.023×10^{23} molecules of $\mathrm{CO}_{2}=44 \mathrm{~g}$
Mass of 7.529×10^{23} molecules of $\mathrm{CO}_{2}=\frac{44 \times 7.529 \times 10^{23}}{6.023 \times 10^{23}}=55 \mathrm{~g}$
47. The density of a gas is $1.78 \mathrm{~g} \mathrm{~L}^{-1}$ at STP. The weight of one mole of a gas is
a) 39.9 g
b) 22.4 g
c) 3.56 g
d) 29 g

Solution : -

Density $=1.78 \mathrm{gL}^{-1}$ at STP
mass of 1 L gas $=1.78 \mathrm{~g}$
1 mol of gas at STP $=22.4 \mathrm{~L}$
\therefore mass of 22.4 L gas $=22.4 \times 1.78=39.872 \mathrm{~g}$
48. Which of the following correctly represents 180 g of water?
(i) 5 moles of water
(ii) 10 moles of water
(iii) 6.023×10^{23} molecules of water
(iv) 6.023×10^{24} molecules of water
a) (i)
b) (ii)
c) (iii)
d) (iv)

Solution : -

18 g of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mol}$
180 g of $\mathrm{H}_{2} \mathrm{O}=10 \mathrm{~mol}$
18 g of $\mathrm{H}_{2} \mathrm{O}=6.023 \times 10^{23}$ molecules of $\mathrm{H}_{2} \mathrm{O}$
180 g of $\mathrm{H}_{2} \mathrm{O}=\frac{6.023 \times 10^{23}}{18} \times 180$
$=6.023 \times 10^{24}$ molecules of $\mathrm{H}_{2} \mathrm{O}$
49. Mark the conversion factor which is not correct.
a) $1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
b) 1 metre $=39.37$ inches
c) 1 litre $=10^{-3} \mathrm{~m}^{3}$
d) $\mathbf{1}$ inch $=3.33 \mathrm{~cm}$
50. What is the concentration of copper sulphate (in mol^{-1}) if 80 g of it is dissolved in enough water to make a final volume of 3L?
a) 0.0167
b) 0.167
c) 1.067
d) 10.67

Solution : -

Molar mass of $\mathrm{CuSO}_{4}=63.5+32+64=159.5$
Moles ofCuSO $44=\frac{80}{159.5}=0.50$
Volume of solution $=3 \mathrm{~L}$
Molaruty $=\frac{\text { mole of solute }}{\text { Volume of solution in } L}=\frac{0.50}{3}=0.167 \mathrm{~mol} \mathrm{~L}^{-1}$

