Equilibrium Important Questions With Answers

NEET Chemistry 2023

1. What is the minimum concentration of ${S O_{4}^{2-}}^{2-}$ required to precipitate BaSO_{4} in a solution containing 1×10^{-4} mole of Ba^{2+} ? $\left(\mathrm{K}_{\text {sp }}\right.$ for $\left.\mathrm{BaSO}_{4}=4 \times 10^{-10}\right)$
a) $4 \times 10^{-10} \mathrm{M}$
b) $2 \times 10^{-10} \mathrm{M}$
c) $4 \times 10^{-6} \mathrm{M}$
d) $2 \times 10^{-3} \mathrm{M}$

Solution:-

$\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}$
$\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-10}$
$4 \times 10^{-10}=1 \times 10^{-4} \times s$
$s=\frac{4 \times 10^{-10}}{1 \times 10^{-4}}=4 \times 10^{-6} \mathrm{M}$
2. Which of the following reactions will not get affected on increasing the pressure?
a) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
b) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
c) $\mathrm{CH}_{\mathbf{4 (\mathrm { g })}}+\mathbf{2 \mathrm { S } _ { 2 (\mathrm { g }) } \rightleftharpoons \mathrm { CS } _ { 2 (\mathrm { g }) } + 2 \mathrm { H } _ { 2 } \mathrm { S } _ { (\mathrm { g }) } , ~}$
d) $\mathrm{PCl}_{\mathrm{s}(\mathrm{g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

Solution : -

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{~S}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CS}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Since the number of moles of gaseous reactants and products are same ($\Delta n_{g}=0$), the reaction will not be affected by changing the pressure.
3. For the reversible reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
The equilibrium shifts in forward direction:
a) By increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
b) By decreasing the pressure
c) By decreasing concentration of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$
d) By increasing pressure and decreasing temperature.

Solution : -

For the reversible reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat The equilibrium shifts in forward direction by increasing pressure and decreasing temperature.
According to Le-Chatalier principle when equilibrium is disturbed by a change, the system will try to nullify the effect of change to restore the equilibrium.
Thus, when pressure is increased, the equilibrium will shift in a direction in which there is a decrease in the number of moles of gaseous substances. This will nullify the effect of increased pressure. This happens in the forward direction.
Similarly for an exothermic reaction, when the temperature is decreased, the equilibrium shifts in the forward direction.
4. If K_{1} and k_{2} are the respective equilibrium constants for the two reactions
$\mathrm{XeF}_{6}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{XeOF}_{4}(g)+2 \mathrm{HF}(g)$
$\mathrm{XeO}_{4}(g)+\mathrm{XeF}_{6}(g) \rightleftharpoons \mathrm{XeOF}_{4}(g)+\mathrm{XeO}_{3} \mathrm{~F}_{2}(g)$

The equilibrium constant of the reaction,
$\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
a) $\mathrm{K}_{1} /\left(\mathrm{K}_{2}\right)^{2}$
b) K_{1} / K_{2}
c) $\mathrm{K}_{1} / \mathrm{K}_{2}$
d) K_{2} / K_{1}

Solution:-

$\mathrm{XeF}_{6}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$
$\mathrm{K}_{1}=\frac{\left[\mathrm{XeOF}_{4}\right][\mathrm{HF}]^{2}}{\left[\mathrm{XeF}_{6}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{XeO}_{4}(\mathrm{~g})+\mathrm{XeOF}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{XeOF}_{4}(\mathrm{~g})+\mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})$
$\mathrm{K}_{2}=\frac{\left[\mathrm{XeOF}_{4}\right]\left[\mathrm{XeO}_{3} \mathrm{~F}_{2}\right]}{\left[\mathrm{XeO}_{4}\right]\left[\mathrm{XeF}_{2}\right]}$
for the reaction,
$\mathrm{XeO}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$K=\frac{\left[\mathrm{XeO}_{3} \mathrm{~F}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{XeO}_{4}\right][\mathrm{HF}]^{2}}$
By dividing eq.(ii) by (i) we get,
$K=\frac{K_{2}}{K_{1}}$
5. According to Lewis concept, an acid is a/an
a) proton donor
b) electron pair donor
c) proton acceptor

d) electron pair acceptor.

Solution : -

Lewis gave the concept of acids and bases on the basis of the ability of a species to donate or accept an electron.
Lewis acids are those which can accept an electron pair. These include species having vacant orbital or positive charges. They should either be electron deficient or have an expandable octet.
Examples include $\mathrm{K}^{+}, \mathrm{Mg}^{2+}$, etc.
Lewis bases are those which can donate a pair of electrons. These include species having L.P. or negative charge. They should have an excess of electrons.
Examples include $\mathrm{OH}^{-}, \mathrm{F}^{-}$, etc.
6. Acidic character of BF_{3} can be explained on the basis of which of the following concepts?
a) Arrhenius concept
b) Bronsted-Lowry concept
c) Lewis concept
d) Bronsted-Lowry as well as Lewis concept

Solution : -

Property of acidic nature of BF_{3} can be explained using the Lewis concept.
According to Lewis concept if a molecular/ion can accept a lone pair of electrons then it is called an acid.
$\mathrm{BF}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BF}_{3}(\mathrm{OH})^{-}+\mathrm{H}^{+}$
7. 0.6 mole of $\mathrm{PCl}_{5}, 0.3$ mole of PCl_{3} and 0.5 mole of Cl_{2} are taken in a 1 L flask to obtain the following equilibrium:
$\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
If the equilibrium constant K_{c} for the reaction is 0.2 . Predict the direction of the reaction.
a) Forward direction
b) Backward direction
c) Direction of the reaction cannot be predicted
d) Reaction does not move in any direction

Solution : -

$\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
$Q_{C}=\frac{0.5 \times 0.3}{0.6}=0.25$
$K_{c}=0.2$, Since, $Q_{c}>K_{c}$ reaction will proceed in backward direction.
8. In which of the following equilibrium K_{c} and K_{p} are not equal
a) $2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
b) $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})}$
c) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
d) $2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{CO}_{2(\mathrm{~g})}$

Solution:-

According to option,
$2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~s})} \rightleftharpoons 2 \mathrm{CO}_{2(\mathrm{~g})}$
$\Delta n=2-1=+1$
Hence, K_{c} and K_{p} are not equal.
9. At $100^{\circ} \mathrm{C}$ the K_{w} of water is 55 times its value at $25^{\circ} \mathrm{C}$. What will be the pH of neutral solution? $(\log 55=1.74)$.
a) 6.13
b) 7.00
c) 7.87
d) 5.13

Solution : -
Given condition $\mathrm{Kw} 25^{\circ} \mathrm{C}=1 \times 10^{-14}$
At $25^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{-}\right]=10^{-14}$
At $100^{\circ} \mathrm{C}$ (given)
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{-}\right]=55 \times 10^{-14}$
for a neutral solution
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\therefore\left[\mathrm{H}^{+}\right]^{2}=55 \times 10^{-14}$
or $\left[\mathrm{H}^{+}\right]=\left(55 \times 10^{-14}\right)^{1 / 2}$
$\because \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Taking log on both side in (i)
$-\log \left[\mathrm{H}^{+}\right]=-\log \left(55 \times 10^{-14}\right)^{1 / 2}$
$\mathrm{pH}=\frac{1}{2}-\log 55+14 \log 10$
$=6.13$
10. Solution of a monobasic acid has a $\mathrm{pH}=5$. If one mL of it is diluted to 1 litre, what will be the pH of be the resulting solution?
a) 3.45
b) 6.96
c) 8.58
d) 10.25

Solution : -

$\mathrm{pH}=5,\left[\mathrm{H}^{+}\right]=10^{-5} \mathrm{M}$
After dilution $=\frac{10^{-5}}{1000}$
$=10^{-8} \mathrm{M}$
Total $\left[\mathrm{H}^{+}\right]=10^{-8}+10^{-7}=1.1 \times 10^{-7}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.1 \times 10^{-7}\right)=6.96$
11. Which of the following is conjugate acid of SO_{4}^{2-} ?
a) HSO_{4}^{-}
b) H^{+}
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
d) SO_{4}^{2-}

Solution :-

conjugate acid of SO_{4}^{2-} is HSO_{4}^{-}
12. The strongest conjugate base is
a) NO_{3}^{-}
b) Cl^{-}
c) $\mathrm{SO}_{4}{ }^{2-}$
d) $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Solution : -

The strength of acid is measured by the ability to lose a proton. An acid is called as strong if it completely ionizes in water while the weak acids do not ionize completely in water, rather they partially dissociates and forms equilibrium with both the acid and conjugate base in the solution.
The ethnic acid (acetic acid) is considered as a weak acid because it does not releases all of its hydrogen in water; rather it dissociates partially and establishes equilibrium with its conjugate base.
$\mathrm{H}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
Strong conjugate base has a weak conjugate acid. Since $\mathrm{CH}_{3} \mathrm{COOH}$ is weakest acid, therefore its conjugate base.
13. Equimolar solution of the following substances were prepared separately. Which one of these will record the highest pH value?
a) BaCl_{2}
b) AlCl_{3}
c) LiCl
d) BeCl_{2}

Solution:-

All of the given salts have same anion i.e., Cl which on hydrolysis gives HCl which is a strong acid. Now, among the salts which have cation that gives a strongest base on hydrolysis of salt have the highest pH value. As Ba form $\mathrm{Ba}(\mathrm{OH})_{2}$ which is a stronger base thus, it results in the highest pH value.
14. What is pOH of an aqueous solution with hydrogen ion concentration equal to $3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$?
a) 9.47
b) 4.52
c) 12.69
d) 11.69

Solution : -
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(3 \times 10^{-5}\right)=4.5229$
$\mathrm{pOH}=14-\mathrm{pH}, 14-4.5229=9.47$
15. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant, K is
a) $-\Delta G=R T \ln K$
b) $\Delta G^{0}=R T \ln K$
c) $\Delta G=-R T \ln K$
d) $-\Delta G^{0}=R T \ln K$

Solution : -

The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is $-\Delta G=R T \ln K$ or $\Delta G=-R T \ln K$
16. Which one of the following molecular hydrides acts as a Lewis acid?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{B}_{2} \mathrm{H}_{6}$
d) CH_{4}

Solution:-

Electron-deficient molecules behave as Lewis acid. Among the given molecules, only diborane is the electron deficient, it does not have the complete octet. Hence it behaves like a Lewis acid.
17. Which one of the following compounds is not a protonic acid?
a) $\mathrm{SO}_{2}\left(\mathrm{OH}_{2}\right)$
b) $\mathrm{B}(\mathrm{OH})_{3}$
c) $\mathrm{PO}(\mathrm{OH})_{3}$
d) $\mathrm{SO}\left(\mathrm{OH}_{2}\right)$

Solution : -

The acid which gives H^{+}when placed in aqueous solution is called protonic acid.
Ortho boric acid does not donate proton like most of the acids but rather it accepts OH^{-}therefore it is a lewis acid.
$\mathrm{B}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$
18. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If K_{sp} of MnS , $\mathrm{FeS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-25}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first?
a) FeS
b) MnS
c) HgS
d) ZnS

Solution:-

Ionic product in the solution $=10^{-3} \times 10^{-16}=10^{-19}$. The metal sulphide having the lowest solubility will precipitate first provided the ionic product is higher than the K_{sp}. Here, all salts are of the same valence type. So, the sulphide having the lowest K_{sp} value will precitate first provided $\mathrm{K}_{\mathrm{sp}}<10^{-19}$. hgS has the lowest K_{sp} value $\left(10^{-54}\right)$, so it will precipitate first.
19. For dibasic acid correct order is
a) $K_{a 1} a 2$
b) $K_{a 1}>K_{a 2}$
c) $K_{a 1}=K_{a 2}$
d) not certain

Solution:-

In polyprotic acids the loss of second proton occurs much less readily than the first. Generally the K_{a} values for successive loss of protons from these acids differ by at least a factor of 10^{-3} i.e.,
$\mathrm{K}_{\mathrm{a}_{1}}<\mathrm{K}_{\mathrm{a}_{2}}$
$\mathrm{H}_{2} \mathrm{X} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HX}^{-}\left(\mathrm{K}_{\mathrm{a}_{1}}\right)$
$\mathrm{HX}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}^{2-}\left(\mathrm{K}_{\mathrm{a}_{2}}\right)$
20. Which of the following is not true about a reversible reaction?
a) The reaction does not proceed to completion.
b) It cannot be influenced by a catalyst
c) Number of moles of reactants and products is always equal.
d) It can be attained only in a closed container

Solution : -

In a reversible reaction, number of moles of reactants and products is not always equal.
It is attained only if the system is closed.
A catalyst does not alter the equilibrium point. It alters the rate of the reaction.
The equilibrium can be shifted either to left or right by altering the volume, pressure, temperature etc.
21. Identify the correct order of solubility in aqueous medium:
a) $\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}$
b) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{ZnS}$
c) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>\mathrm{CuS}$
d) $\mathrm{CUS}>\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}$

Solution : -

The order or strength of solubility in the aqueous medium depends upon the lattice energy, hybridization and size of the cation.
The anions here are sulphide ions and the size of cations decrease across the period: $\mathrm{Na}^{+}>\mathrm{Zn}^{+}>\mathrm{Cu}^{+}$ solubility will be more when there is the maximum distance between the atoms. $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>$ Cus
22. If the value of an equilibrium constant for a particular reaction is 16×10^{12}, then at equilibrium the system will contain:
a) mostly reactants
b) mostly products
c) similar amounts of reactants and products
d) all reactants

Solution : -

Given equilibrium constant for reaction
$\mathrm{K}=1.6 \times 10^{12}=\frac{[\text { Product }]}{[\text { Reactant }]}$
Then the value of K is very high so the system will contain max. products at equilibrium.
23. For the reaction, $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$. What is K_{c} when the equilibrium concentration of $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M}$, $\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$?
a) $\mathbf{1 2 . 2 2 9 ~} \mathrm{L} \mathrm{mol}^{-1}$
b) $24.5 \mathrm{~L} \mathrm{~mol}^{-1}$
c) $36.0 \mathrm{~L} \mathrm{~mol}^{-1}$
d) $2.67 \times 10^{3} \mathrm{~L} \mathrm{~mol}^{-1}$

Solution : -

The formula for calculating equilibrium constant $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
$K_{c}=\frac{\left(1.9^{2}\right)}{\left[(0.6)^{2}\right] \times[0.82]}$
$K_{c}=\frac{3.61}{0.36 \times 0.82}$
$K_{c}=\frac{3.61}{0.2952}$
$\therefore \mathrm{K}_{\mathrm{c}}=12.229 \mathrm{~L} / \mathrm{mol}$
24. For the reversible reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
The equilibrium shifts in forward direction:
a) By increasing the concentration of $\mathrm{NH}_{3(\mathrm{~g})}$
b) By decreasing the pressure
c) By decreasing the concentration of $\mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$
d) By increasing pressure and decreasing temperature.

Solution : -

For the reversible reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat The equilibrium shifts in forward direction by increasing pressure and decreasing temperature.
According to Le-Chatalier principle when equilibrium is disturbed by a change, the system will try to nullify the effect of change to restore the equilibrium.

Thus, when pressure is increased, the equilibrium will shift in a direction in which there is a decrease in the number of moles of gaseous substances. This will nullify the effect of increased pressure. This happens in the forward direction.
Similarly for an exothermic reaction, when the temperature is decreased, the equilibrium shifts in the forward direction.
25. When sulphur is heated at $900 \mathrm{~K}, \mathrm{~S}_{8}$ is converted to S_{2}. What will be the equilibrium constant for the reaction if initial pressure of 1 atm falls by 25% at equilibrium?
a) $0.75 \mathrm{~atm}^{3}$
b) $2.55 \mathrm{~atm}^{3}$
c) $25.0 \mathrm{~atm}^{3}$
d) $1.33 \mathrm{~atm}^{3}$

Solution : -

The given reaction is:-
$\mathrm{S}_{8} \rightleftharpoons 4 \mathrm{~S}_{2}$
Initial pressure: 1 atm 0 (given)
At equilibrium: 1- $0.254 \times 0.25=1 \mathrm{~atm}$ (At eqm P of S_{8} falls by 25%)
$=0.75 \mathrm{~atm}$
So, $K_{P}=\frac{\left(P_{S_{2}}\right)^{4}}{P_{S_{8}}}$
$=\frac{(1)^{4}}{0.75}=\frac{4}{3}=1.33 \mathrm{~atm}^{3}$
26. The hydrogen ion concentration of a $10^{-8} \mathrm{M} \mathrm{HCl}$ aqueous solution at $298 \mathrm{~K}\left(\mathrm{Kw}=10^{-14}\right)$ is
a) $11 \times 10^{-8} \mathrm{M}$
b) $9.525 \times 10^{-8} \mathrm{M}$
c) $10 \times 10^{-8} \mathrm{M}$
d) $10 \times 10^{-6} \mathrm{M}$

Solution : -
Given solution of $10^{-8} \mathrm{M} \mathrm{HCl}\left[\mathrm{H}^{+}\right]=10^{-8}$
$\left[\mathrm{H}^{+}\right]$of water $=10^{-7}$
Total $\left[\mathrm{H}^{+}\right]=10^{-7}+10^{-8}=10 \times 10^{-8} \times 10^{-8}$
$10^{-8}(10+1)=11 \times 10^{-8}$
27. The solubility product of BaCl_{2} is 3.2×10^{-9}. What will be its solubility in $\mathrm{mol}_{\mathrm{L}^{-1}}$?
a) 4×10^{-3}
b) 3.2×10^{-9}
c) 1×10^{-3}
d) 1×10^{-9}

Solution:-

$\mathrm{BaCl}_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=x \times(2 x)^{2}=4 x^{3}$
$4 x^{3}=3.2 \times 10^{-9}$
$\Rightarrow x=9.28 \times 10^{-4}=0.928 \times 10^{-3}=1 \times 10^{-3}$
28. Equimolar solutions of the following substances were prepared separately. Which of these will record the highest pH value
a) BaCl_{2}
b) AlCl_{3}
c) LiCl
d) BeCl_{2}

Solution : -

$\left(\mathrm{AlCl}_{3}, \mathrm{LiCl}\right.$ and $\left.\mathrm{BeCl}_{2}\right)$ all these solutions are acidic because of cationic hydrolysis, whereas BaClr , is salt of strong base $\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)$ and strong acid (HCl), thus it will have maximum PH .
29. The pH value of a 10 M solution of HCl is :
a) Less than 0
b) Equal to 0
c) Equal to 1
d) Equal to 2

Solution : -

$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})\left[\mathrm{S}=\sqrt{K_{s p}}\right]$
$[\mathrm{HCl}]=10 \mathrm{M}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=10 \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=-\operatorname{loh}\left[\mathrm{H}^{+}\right]=-\log 10$
$=-1$, so the pH is less than zero.
30. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product K_{sp} of $\mathrm{Ba}(\mathrm{OH})_{2}$ is :
a) 3.3×10^{-7}
b) 5.0×10^{-7}
c) 4.0×10^{-6}
d) 5.0×10^{-6}

Solution : -

$\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}$
At equilibrium $\times 2 x$
$12=-\log \left[\mathrm{H}^{+}\right] \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-12}$
As, $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]-\mathrm{K}_{\mathrm{w}}=10^{-14}$
$10^{-12}\left[\mathrm{OH}^{-}\right]=10^{-14} \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-2}$
If $\left[\mathrm{OH}^{-}\right]=2 x=10^{-2}$ then $x=5.0 \times 10^{-3}$
Now, $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right] 2$
$\mathrm{K}_{\text {sp }}=\left(5 \times 10^{-3}\right)\left(10^{-2}\right)^{2}=5.0 \times 10^{-7}$
31. The compound whose aqueous solution hai the highest pH is
a) NaCl
b) NaHCO_{3}
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) $\mathrm{NH}_{4} \mathrm{Cl}$

Solution : -

NaCl is a salt of strong acid and strong base hence its aqueous solution will be neutral ie $\mathrm{pH}=7 . \mathrm{NaHCO}_{3}$ is an acidic salt hence $\mathrm{pH}<7 . \mathrm{Na}_{2} \mathrm{CO}_{3}$ is a salt of weak acid and strong base. Hence its aqueous solution will be strongly basic ie. $\mathrm{pH}>7 . \mathrm{NH}_{4} \mathrm{Cl}$ is salt of weak base and strong acid, hence its aqueous solution will be strongly acidic i.e. $\mathrm{pH}<7$.
32. For which of the following reactions, $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$?
a) $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{5(\mathrm{~g})}$
b) $\mathrm{H}_{\mathbf{2 (\mathrm { g })}}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})}$
c) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
d) $\mathrm{CaCO}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

Solution:-

$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
If $\Delta n=0, K_{p}=K_{c}$
If $\Delta \mathrm{n}>0$, then $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
If $\Delta \mathrm{n}<0$, then $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
For the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})}$
$\Delta \mathrm{n}$ is the number of moles of gaseous products - number of moles of gaseous reactants in a balanced equation.
$\Delta \mathrm{n}=2-(1+1)=0$
$\therefore \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
33. What will be the pH of $1 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
a) 10.4
b) 3.70
c) 3
d) 13

Solution:-
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
$\left[\mathrm{H}^{+}\right]=2 \times 1 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left(2 \times 10^{-4}\right)=3.70$
34. The \% yield of ammonia as a function of time in the reaction $N_{2(g)}+3 H_{2(g)} \rightleftharpoons 2 N H_{3(g)}, \Delta H<0$ at ($\mathrm{P}, \mathrm{T}_{1}$) is given below.

If this reaction is conducted at $\left(P, T_{2}\right)$, with $T_{2}>T_{1}$, the $\%$ yield of ammonia as a function of time is represented by
a)

b)

c)

d)

Solution:-

$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \stackrel{\text { exd }}{\stackrel{\text { endo }}{\rightleftharpoons}} 2 \mathrm{NH}_{3(g)}, \Delta H<0$
Initially, with increase in temperature ($T_{2}>T_{1}$) \% yield increases.Afterwards, equilibrium is reached and if the temperature is increased, i.e., heat is supplied to the system, then according to Le Chatelier's principle, the equilibrium will shift in the backward direction, where the heat is absorbed. Hence, the \% yield decreases.
35. The pH value of blood does not change appreciably by a small addition of an acid or base, because the blood
a) is a body fluid
b) can be easily coagulated
c) contains iron as a part of the molecule
d) contains serum protein that acts as buffer

Solution : -

The buffer system present in serum is $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$ and as we know that a buffer solution resist the change in pH therefore pH value of blood does not change by a small addition of an acid or a base.
36. The dissociation equilibrium of a gas $A B_{2}$ can be represented as $2 A B_{2(g)} \rightleftharpoons 2 A B_{(g)}+B_{2(\mathrm{~g})}$ The degree of dissociation is x and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant K_{p} and total pressure P is :
a) $\left(2 \mathrm{~K}_{\mathrm{P}} / \mathrm{P}\right)$
b) $(2 K \mathrm{~K} / \mathrm{P})^{1 / 3}$
c) $\left(2 K_{p} / P\right)^{1 / 2}$
d) $\left(K_{p} / P\right)$

Solution:-

$2 \mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}+\mathrm{B}_{2(\mathrm{~g})}$
200 (Initial)
$2(1-x) 2 x \quad x$ (at equilibrium) Amount of moles at equilibrium
$=2(1-x)+2 x+x=2+x$
$\mathrm{K}_{\mathrm{p}}=\frac{\left[p_{A B}\right]^{2}\left[p_{b_{2}}\right]}{\left[p_{A B_{2}}\right]^{2}}$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\frac{2 x}{2+x} P\right)^{2} \times\left(\frac{x}{2+x} \times P\right)}{\left(\frac{2(1-x)}{2+x} \times P\right)}=\frac{\frac{4 x^{3}}{2+x} \times P}{4(1-x)^{2}}$
$\mathrm{K}_{\mathrm{p}}=\frac{4 x^{3} \times P}{2} \times \frac{1}{4}(\because 1-\mathrm{x} \approx 1$ and $2+\mathrm{x} \approx 2)$
$\mathrm{x}=\left(\frac{8 K_{p}}{4 P}\right)^{1 / 3} \Rightarrow \mathrm{x}=\left(\frac{2 K_{p}}{P}\right)^{1 / 3}$
37. 5 moles of SO_{2} and 5 moles of O_{2} react in a dosed vessel. At equilibrium 60% of the SO_{2} is consumed. The total number of gaseous moles $\left(\mathrm{SO}_{2}, \mathrm{O}_{2}\right.$ and $\left.\mathrm{SO}_{3}\right)$ in the vessel is
a) 5.1
b) 3.9
c) 10.5
d) 8.5

Solution : -

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

Initial moles $5 \quad 5 \quad 0$
At equilibrium 5-3 $5-\frac{3}{2} 3\left(5 \times \frac{60}{100}=3\right)$
Total number of moles in the vessel $=2+3.5+3=8.5$
38. The rate of reaction depends upon the:
a) Volume
b) Force
c) Pressure
d) Concentration of reactants

Solution : -

According to law of mass action, the rate of a reaction depends upon the active masses or molar concentration of reactants. Rate of reaction \propto Concentration of reactants
39. Which of these is least likely to act as Lewis base?
a) CO
b) F^{-}
c) BF_{3}
d) PF_{3}

Solution : -

$\mathrm{CO}, \mathrm{F}^{-}$and PF_{3} can either donate a lone pair of electron or pi electrons. Hence, they act as Lewis bases.
On the other hand, BF_{3} has vacant orbital in which it can accent a lone pair of electrons or pi electrons. Hence, it acts as a Lewis acid. Thus, it has least tendency to act as a Lewis base.
40. The solubility product of sparingly soluble salt $A X_{2}$ is 3.2×10^{-11}. Its solubility (in $\mathrm{mol} / \mathrm{L}$) is :
a) 5.6×10^{-6}
b) 3.1×10^{-4}
c) 2×10^{-4}
d) 4×10^{-4}

Solution:-

$A X_{2} \rightleftharpoons A^{2+}+2 X^{-}$
$\mathrm{s} \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s} \mathrm{~mol} \mathrm{~L}^{-1} 2 \mathrm{~s} \mathrm{~mol} \mathrm{~L}{ }^{-1}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{A}^{2+}\right]\left[\mathrm{X}^{-}\right]^{2}=\mathrm{s} \times(2 \mathrm{~s})^{2}=4 \mathrm{~s}^{3}$
$3.2 \times 10^{-11}=4 \mathrm{~s}^{3}$
$\Rightarrow \mathrm{s}^{3}=8 \times 10^{-12}$
$\mathrm{s}=2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
41. For the reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\triangle H_{r}=170.8 \mathrm{kJmol}^{-1}$
Which of the following statement is not true?
a) The equilibrium constant for the reaction is given by $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CO}_{4}\right]\left[\mathrm{O}_{2}\right]}$
b) Addition of $\mathrm{CH}_{4(\mathrm{~g})}$, or $\mathrm{O}_{2(\mathrm{~g})}$ at equilibrium will cause a shift to the right. c) The reaction is exothermic
d) At equilibrium, the concentrations of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are not equal

Solution : -

The given reaction is:-
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now, $K_{C}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}$
Now, $\mathrm{H}_{2} \mathrm{O}$ is pure liquid, so, $\left[\mathrm{H}_{2} \mathrm{O}\right]=1$
$\Rightarrow K_{C}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}$
$\because \Delta \mathrm{Hr}=-170.8 \mathrm{KJ} / \mathrm{mol}$ is negative, so reaction is exothermic by adding $\mathrm{O}_{2}(\mathrm{~g})$ or $\mathrm{CH}_{4}(\mathrm{~g})$ at equilibrium, by Le Chatelier's principle, the equilibrium shift towards right side.
42. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of $\mathrm{NH}_{4}{ }^{+}$is 0.20 M . If the equilibrium constant, K_{b} for NH_{3} equals 1.8×10^{-5}, what is the pH of this solution? $(\log 2.7=0.43)$
a) 9.43
b) 11.72
c) 8.73
d) 9.08

Solution : -

$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { base }]}$
$=-\log \mathrm{Kb}+\log \frac{[\text { Salt }]}{[\text { base }]}$
$=-\log 1.8 \times 10-5+\log \frac{0.20}{0.30}$
$=5-0.25+(-0.176)=4.57$
Now, pH = $14-$ pOH $=14-4.57=9.43$
43. Consider the following liquid-vapour equilibrium

Liquid \rightleftharpoons Vapour
Which of the following relations is correct?
a) $\frac{\operatorname{dn} \mathrm{G}}{\mathrm{dT}^{2}}=\frac{\Delta \mathrm{H}_{v}}{\mathrm{RT}^{2}}$
b) $\frac{d \ln \mathrm{P}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}_{v}}{\mathrm{RT}}$
c) $\frac{d \ln \mathrm{P}}{\mathrm{dT}^{2}}=\frac{-\Delta \mathrm{H}_{v}}{\mathrm{~T}^{2}}$
d) $\frac{d \ln \mathrm{P}}{d \mathrm{~T}}=\frac{\Delta \mathrm{H}_{v}}{\mathrm{RT}^{2}}$

Solution : -

According to Clausius - Clapeyron's equation
$\frac{d \ln P}{d T}=\frac{\triangle_{H_{v}}}{R T^{2}}$
According to this equation, the rate at which the natural logarithm of the vapor pressure of a liquid changes with temperature is determined by the molar enthalpy of vaporization of the liquid, the ideal gas constant, and the temperature of the system.
44. The pH of neutral water at $25^{\circ} \mathrm{C}$ is 7.0 . As the temperature increases, ionisation of water increases, however, the concentration of H^{+}ions and OH^{-}ions are equal. What will be the pH of pure water at $60^{\circ} \mathrm{C}$?
a) Equal to 7.0
b) Greater than 7.0
c) Less than 7.0
d) Equal to zero

Solution : -

The pH of neutral water at $25^{\circ} \mathrm{C}$ is 7.0
$\therefore\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}\left(\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\right)$
Now, $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-7}\right)^{2}=1 \times 10^{-14}$
As the temperature increases, ionisation of water increases, thus $[\mathrm{H}+]$ and $[\mathrm{OH}-]$ increases equally. Now, $\mathrm{K}_{\mathrm{w}}=$ $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]>1 \times 10^{-14}\left(.:\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]\right)$
or $\left[\mathrm{H}^{+}\right] 2>1 \times 10^{-14}$
$\therefore\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$ and $\mathrm{pH}<7$
45. Which of the following is most soluble?
a) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(\mathrm{~K}_{\text {sp }}=1 \times 10^{-70}\right)$
b) $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
c) $\operatorname{CuS}\left(\mathrm{K}_{\mathrm{sp}}=8 \times 10^{-37}\right)$
d) $\mathrm{Ag}_{2} \mathrm{~S}\left(\mathrm{~K}_{\mathrm{cn}}=6 \times 10^{-51}\right)$

Solution : -

Solubility of an electrolyte increases with increase in their ionic product i.e. solubility product. Now,
$\mathrm{K}_{\mathrm{sp}}(\mathrm{MnS})>\mathrm{K}_{\text {sp }}(\mathrm{CuS})>\mathrm{K}_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{~S}\right)>\mathrm{K}_{\text {sp }}\left(\mathrm{Bi}_{2} \mathrm{~S}_{3}\right)$
Therefore MnS will be most soluble.
46. Given the reaction between 2 gases represented by A_{2} and B_{2} to give the compound $A B(g)$.
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})$
At equilibrium, the concentration
of $\mathrm{A}_{2}=3.0 \times 10^{-3} \mathrm{M}$
of $B_{2}=4.2 \times 10^{-3} \mathrm{M}$
of $A B=2.8 \times 10^{-3} \mathrm{M}$
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then the value of K . will be:
a) 2.0
b) 1.9
c) 0.62
d) 4.5

Solution : -

$A_{2}+B_{2} \rightleftharpoons 2 A B ; \quad K_{c}=\frac{[A B]^{2}}{\left[A_{2}\left[B_{2}\right]\right.}$
$K_{c}=\frac{\left(2.8 \times 10^{-3}\right)^{2}}{3 \times 10^{-3} \times 4.2 \times 10^{-3}}$
$=\frac{(2.8)^{2}}{3 \times 4.2}=0.62$
47. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:
Assertion: For the reaction:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
Reason: Concentration of gaseous reactants and products is taken as unity.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion
c) If assertion is true but reason is false.
d) If both assertion and reason are false.

Solution:-

(I) The given reaction is:-
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}$
we know that, $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta n}$
$\Delta \mathrm{n}=\mathrm{no}$. of moles of gaseous products - No. of moles of gaseous reactants.
$=2-(3+1)=-2$
$\Rightarrow \mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{-2}$.
(II) the concentrations of pure solids and liquids are taken as unity.
48. For the reaction $\mathrm{a}+\mathrm{b} \rightleftharpoons \mathrm{c}+\mathrm{d}$, initially concentrations of a and b are equal and at equilibrium the concentration of d will be twice of that of a. What will be the equilibrium constant for the reaction?
a) 2
b) 9
c) 4
d) 3

Solution:-

$a+b \rightleftharpoons c+d$
Initial concentrations of 'a' and 'b' are equal let it be ' x '.
At equilibrium, the concentration will be twice that of 'a' i.e. $2 x$.
Since concentration of c and d are equal thus the concentration of c at equilibrium will be 2 x .
\therefore The equilibrium constant for the reaction $\mathrm{K}_{\mathrm{c}}=\frac{2 x \times 2 x}{x \times x}=\frac{x^{2}}{x^{2}}$
$\therefore \mathrm{K}_{\mathrm{C}}=4$.
49. For a reversible reaction at 298 K the equilibrium constant K is 200 . What is the value of ΔG^{0} at 298 K ?
a) -13.13 kcal
b) -0.13 kcal
c) $\mathbf{- 3 . 1 5 8} \mathbf{~ k c a l}$
d) -0.413 kcal

Solution : -

Applying $\Delta G^{0}=-2.303 R T \times 10 \mathrm{gK}$
$=-2.303 \times 2 \times 298 \times \log 200$
$=-3158.4 \mathrm{cal}=-3.158 \mathrm{kcal}$
50. In the system $X+2 Y \rightleftharpoons Z$, the equilibrium concentrations are, $[X]=0.06 \mathrm{~mol} \mathrm{~L}^{-1},[y]=0.12 \mathrm{~mol} \mathrm{~L}^{-1},[\mathrm{Z}]=0.216$ $\mathrm{mol} \mathrm{L} \mathrm{L}^{-1}$. Find the equilibrium constant of the reaction.
a) $\mathbf{2 5 0}$
b) 500
c) 125
d) 273

Solution :-

$$
\begin{aligned}
& \mathrm{X}+2 \mathrm{Y} \rightleftharpoons \mathrm{Z} \\
& 0.060 .12 \quad 0.216 \\
& \mathrm{~K}_{\mathrm{c}}=\frac{[Z]}{[X][Y]^{2}}=\frac{0.216}{0.06 \times 0.12 \times 0.12}=250
\end{aligned}
$$

