司
 NectPreparation

Redox Reactions Important Questions With Answers

NEET Chemistry 2023

1. The charge on cobalt in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is
a) +3
b) -3
c) +6
d) -6

Solution:-

$\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-} ; x-6=-3 ; x+3$
2. Correct order of tendency to loss of electrons
a) $\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ag}$
b) $\mathrm{Zn}<\mathrm{Cu}<\mathrm{Ag}$
c) $\mathrm{Zn}>\mathrm{Cu}<\mathrm{Ag}$
d) $\mathrm{Cu}>\mathrm{Zn}>\mathrm{Ag}$

Solution:-

In the mole of electroeffective metal.
3. What is the equivalent mass of KIO_{3} in the given reaction?
$\mathrm{KIO}_{3}+2 \mathrm{KI}+6 \mathrm{HCl} \rightarrow 31 \mathrm{Cl}+3 \mathrm{KCI}+3 \mathrm{H}_{2} \mathrm{O}$
a) 214
b) 428
c) 107
d) 53.5

Solution :-

$\stackrel{+5}{K} \mathrm{IO}_{3} \rightarrow \stackrel{+1}{\mathrm{I}} \mathrm{CI}$
$\mathrm{M}=39+127+48=214$
$E=\frac{M}{4}=\frac{214}{4}=53.5$
4. Identify the correct statement with respect to the following reaction,
$2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+2 \mathrm{KMnO}_{4}$
a) Oxidation of potassium manganate is taking place.
b) Reduction of potassium manganate is taking place.
c) Oxidation of Cl_{2} is taking place.
d) Cl_{2} acts as reducing agent in the reaction.

Solution : -

$2 \mathrm{~K}_{2} \stackrel{+6}{\mathrm{M}} \mathrm{n} \mathrm{O}_{4}+\stackrel{0}{\mathrm{C}} \mathrm{l}_{2} \rightarrow 2 \mathrm{KC} \stackrel{-1}{\mathrm{I}}+2 \mathrm{~K}_{\mathrm{M}}^{\mathrm{M}} \mathrm{n}_{\mathrm{O}}^{4}$
$\mathrm{Mn} \rightarrow$ Increase in oxidation number hence oxidation.
$\mathrm{Cl}_{2} \rightarrow$ Decrease in oxidation number hence reduction.
Cl_{2} is acting as an oxidising agent.
5. Equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the change, $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}$ is:
a) $M / 3$
b) $M / 6$
c) $M / 2$
d) $\mathrm{M} / 1$

Solution :-

$\mathrm{Fe}^{+2} \rightarrow \mathrm{Fe}^{+3}+\mathrm{e}^{-}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$
Adding both the reactions, we get,
$\mathrm{Fe}^{+2}+\mathrm{C}_{2} \mathrm{O}_{4}^{-2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{Fe}^{+3}+3 \mathrm{e}^{-}$

Equivalent weight is defined as the molecular weight divided by the number of moles of electron required by the molecule.
Hence, the equivalent weight is equal to $\frac{M}{3}$
6. In the reaction, $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$: The eq. mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is equal to its
a) \mathbf{M}
b) $M / 2$
c) $2 \times \mathrm{M}$
d) $M / 6$

Solution : -

According to reaction,
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
Oxidation of S in $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}=2$
Oxidation number of S in $\mathrm{S}_{4} O_{6}^{2-}=\frac{5}{2}$
again, $2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{-2}$
For 2 moles of $\mathrm{S}_{2} \mathrm{O}_{3}^{-2}$ change in oxidation number
$=4 \times \frac{5}{2}-2 \times 2 \times 2$
=2
For $1 \mathrm{~mol}=\frac{2}{2}=1$
\therefore Equivalent mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\frac{\text { Molecular wt }}{\text { Change in Oxidation no. }}$
$=\frac{\text { Molecular } w t}{1}$
7. Using the following Latimer diagram for bromine,
$\mathrm{pH}=0 ; \mathrm{BrO}_{-} \xrightarrow{1.82 \mathrm{~V}} \mathrm{BrO}_{3} \xrightarrow{1.50 \mathrm{~V}} \mathrm{HBrO} \xrightarrow{1.595 \mathrm{~V}} \mathrm{Br}_{2} \xrightarrow{1.06552 \mathrm{~V}} \mathrm{Br}^{-}$the species undergoing disproportionation is
a) BrO_{4}^{-}
b) BrO_{3}^{-}
c) HBrO
d) Br_{2}

Solution : -
If the potential to the left of a given chemical species is less than that to the right, the species will undergo disproportionation.
8. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:
$\mathrm{BrO}_{4}^{-} \xrightarrow{1.82} \mathrm{VBrO}{ }_{3}^{-} \xrightarrow{1.5} \mathrm{~V} H B r O 1.595 \xrightarrow[\longrightarrow]{V} \mathrm{Br}_{2} \xrightarrow{1.0652} \underset{\longrightarrow}{V} \mathrm{Br}^{-}$Then the species undergoing disproportionation is:
a) BrO_{3}^{-}
b) BrO_{4}^{-}
c) Br_{2}
d) HBrO

Solution:-

$\mathrm{H} \stackrel{+1}{\mathrm{~B}} \mathrm{r} \mathrm{O} \longrightarrow \stackrel{0}{\mathrm{~B}} \mathrm{r}_{2}, \mathrm{E}_{\mathrm{HBrO} / \mathrm{Br} 2}=1.595 \mathrm{~V}$
$\mathrm{H} \stackrel{+1}{\mathrm{Br}} \mathrm{O} \longrightarrow \mathrm{BrO}_{3}^{-} \quad, E_{\mathrm{BrO}_{3}^{-} / \mathrm{HBrO}}^{0}=1.5 \mathrm{~V}$
E^{0} cell for the disproportionation of HBrO ,
$\mathrm{E}^{0}{ }_{\text {cell }}=\mathrm{E}^{0} \mathrm{HBrO} / \mathrm{Br} 2-\mathrm{E}^{0}{ }_{\text {BrO3}} / \mathrm{HBrO}$
= 1.595-1.5
$=0.095 \mathrm{~V}=+\mathrm{ve}$
$\mathrm{E}_{\text {cell }}^{0}>0$,
So, $\Delta \mathrm{G}^{0}<0$ (Spontaneous)
9. Mark the correct statement from the following:
a) Copper metal can be oxidised by Zn^{2+} ions.
b) Oxidation number of phosphorus in P_{4} is 4 .
c) An element in the highest oxidation state acts only as a reducing agent.
d) The element which shows highest oxidation number of +8 is Os in OsO_{4}.

Solution : -

A. Copper metal cannot be oxidised by Zn^{2+} ion because the reduction potential of copper ions is higher than zinc ions. Thus will get reduced in the presence of zinc metal as:
$\mathrm{Zn}+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}$
B. Oxidation number of an atom in its elemental form is zero. Thus oxidation number of phosphorus is zero in P_{4}
C. An element in its highest oxidation state can not loose more electrons and thus can not be oxidised further.

Therefore will get reduced only and will act as an oxidising agent or oxidant.
D. Osmium is the element which shows highest oxidation number of +8 in OsO_{4} as
$x+4 \times(-2)=0$
$x=+8$.
10. Oxidation numbers of Mn in its compounds $\mathrm{MnCl}_{2}, \mathrm{Mn}(\mathrm{OH})_{3}, \mathrm{MnO}_{2}$ and KMnO_{4} respectively are
a) $+2,+4,+7,+3$
b) +2, +3, +4, +7
c) $+7,+3,+2,+4$
d) $+7,+4,+3,+2$

Solution:-

The charges on $\mathrm{Cl}, \mathrm{O}, \mathrm{H}, \mathrm{K}$ are $-1,-2,+1,+1$ respectively. Therefore, the oxidation states of Mn in its given compounds can be calculated as follows:
$\mathrm{MnCl}_{2} \rightarrow x+(-2)=0 \Rightarrow x=+2$
$\mathrm{Mn}(\mathrm{OH})_{3} \rightarrow x+(-3)=0 \Rightarrow \mathrm{x}=+3$
$\mathrm{MnO}_{2} \rightarrow \mathrm{x}+(-4)=0 \Rightarrow \mathrm{x}=+4$
$\mathrm{KMnO}_{4} \rightarrow+1+\mathrm{x}+(-8)=0 \Rightarrow \mathrm{x}=+7$
11. Fill up the table from the given choice.

Element Oxidation number

Oxygen	-2 in most compounds_(i)_in $\mathrm{H}_{2} \mathrm{O}_{2}$ and_(ii)_ in OF_{2}
Halogen -1 for_(iii)_ in all its compounds	
Hydrogen_(iv)_in most of its compounds_(v)_in binary metallic hydrides	
Sulphur _(vi)_in all sulphides	

a)

(i) $($ (ii) (iii) (iv) (v) (vi)
$+1+1$ Cl $+1-1+2$

b)

(i) (ii)(iii)(iv)(v)(vi)	
$-1+2 F$	$+1-1-2$

c)

(i)(ii)(iii)(iv)(v)(vi)	
$-1+1$	F

d)
(i) (ii) (iii)(iv)(v) (vi)
$+1+2 \mathrm{Cl}+1+1+6$

Solution : -

Oxygen: -2 in most compounds ($2 \times 1+2 x=0 \Rightarrow x=-1$) -1 (i) in $\mathrm{H}_{2} \mathrm{O}_{2}$ and $(x-2 \Rightarrow x=+2)+2$ (ii) in OF_{2}
Halogen: -1 for F luorine (F) (iii) in all its compounds
Hydrogen: +1 (iv) in most of its compounds -1 (v) in binary metallic hydrides Sulphur: -2 (vi) in all sulphides.
12. What is Eo_{3} in the following reaction, $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
a) 16
b) 48
c) 32
d) 8

Solution : -

$2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
2 moles of $\mathrm{O}_{3}=3 \times 4$ eq of $\mathrm{O}_{2}\left(E o_{2}=\frac{32}{4}\right)$
1 mole of $\mathrm{O}_{3}=6 \mathrm{eq}$ of O_{2}
1eq. of $\mathrm{O}_{2}=\frac{48}{6} \mathrm{gm} \mathrm{O}_{3}$
1 eq of $\mathrm{O}_{2}=8 \mathrm{~g}$ of O_{3}
13. Match the column I with column II and mark the appropriate choice.

Column I (Compound)	Column II (Oxidation stateof Fe)	
(A) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{OH})_{6}\right]$	(i)	$+8 / 3$
(B) $\mathrm{K}_{2}\left[\mathrm{FeO}_{4}\right]$	(ii)	+2

Column I (Compound)	Column II (Oxidation stateof Fe)

(C) $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (iii) +2
(D) $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (iv) +6
a) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iv) \quad b) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)
c) $(A) \rightarrow$ (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)
d) (A) \rightarrow (iv), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)

Solution:-

$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{OH})_{6}\right] \rightarrow+3+x-6=0 \Rightarrow x=+3$
$\mathrm{K}_{2}\left[\mathrm{FeO}_{4}\right] \rightarrow+2+x-8=0 \Rightarrow x=+6$
$\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{x}-2+2 \mathrm{x}-6=0 \Rightarrow 3 \mathrm{x}=+8 \Rightarrow \mathrm{x}=+8 / 3$
14. When Cl_{2} reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from:
a) Zero to +1 and Zero to -5
b) Zero to -1 and Zero to +5
c) Zero to -1 and Zero to +3
d) Zero to +1 and Zero to -3

Solution : -

$3 \stackrel{0}{\mathrm{C}} \mathrm{l}_{2}+\underset{\text { (hot }}{6 \mathrm{~N}} \underset{\&}{\mathrm{NaO}} \underset{\text { conc. })}{\mathrm{H}} \rightarrow 5 \stackrel{-1}{\mathrm{NaCl}}+\mathrm{NaCl} \stackrel{+5}{\mathrm{Cl}} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ This is an example of disproportionation reaction in which oxidation state of chlorine changes from 0 to -1 and +5 .
15. Given $E_{A g^{+} / A g}^{0}=+0.80 \mathrm{~V} ; E_{C u^{2+} / C u}^{0}=+0.34 V ; E_{F^{3+} / F^{2+}}^{0}=+0.76 \mathrm{~V} ; E_{C e^{4+} / C e^{3+}}^{0}=+1.60 \mathrm{~V}$ Which of the following statements is not correct?
a) Fe^{3+} does not oxidise Ce^{3+}.
b) Cu reduces Ag^{+}to Ag .
c) Ag will reduce Cu^{2+} to Cu .
d) Fe^{3+} reduces Cu^{2+} to Cu .

Solution : -

Since Ag has higher reduction potential than Cu, Ag will not reduce Cu^{2+} to $\mathrm{Cu} . \mathrm{Cu}$ can reduce Ag^{+}to Ag .
16. What is the equivalent mass of KBrO_{3} in the given reaction?
$\mathrm{BrO}_{3}{ }^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
a) M/8
b) $M / 3$
c) $M / 5$
d) $M / 6$

Solution : -

$\stackrel{+5}{\mathrm{Br}} \mathrm{O}_{3}^{-} \rightarrow \mathrm{Br}_{2}^{0} ; E=\frac{M}{5}$
17. Which compound among the following has lowest oxidation number of chlorine?
a) HClO_{4}
b) HClO_{3}
c) HCl
d) HOCl

Solution : -

Let the oxidation number of chlorine be x .
Oxidation number of $\mathrm{H}=+1$ and $\mathrm{O}=-2$
(A) $\mathrm{HCLO}_{4}: 1+x+4 \times(-2)=0$
$\mathrm{x}-7=0$ or $\mathrm{x}=7$
(B) $\mathrm{HClO}_{3}: 1+x+3 \times(-2)=0$
$\mathrm{x}-5=0$ or $\mathrm{x}=5$
(C) $\mathrm{HCl}: 1+x=0$
$x=-1$
(D) HOCI: $1+(-2)+x=0$
$x-1=0$ or $x=+1$
Therefore lowest oxidation number of chlorine is -1 in HCl .
18. The mass of 50% (mass/mass) solution of HCl required to react with 100 g of CaCO_{3} would be
a) 73 g
b) 100 g
c) $\mathbf{1 4 6} \mathrm{g}$
d) 200 g

Solution : -

eq of $\mathrm{HCl}=\mathrm{eq}$ of CaCO_{3}
$\frac{W}{36.5}=\frac{100}{50} ; W_{H C I}=73 \mathrm{gm}$
50 g of HCl is present in 100 gm of HCl solution
73 g of $\mathrm{HCl} \rightarrow$? $=146 \mathrm{gm}$ of HCl
19. The E_{0} values of redox complex of halogens are given. Based on these values mark the correct statement. $E_{I_{2} / I^{-}}^{0}=+0.54 E_{B r_{2} / B r^{-}}^{0}=+1.08 \mathrm{~V}, E_{C l_{2} / C l^{-}}^{0}=+1.36 \mathrm{~V}$,
a) Chlorine can displace bromine and iodine from their salt solutions.
b) Chlorine can only displace iodine from its salt solution.
c) Bromine can displace chlorine from its salt solution.
d) lodine can displace chlorine and bromine from their salt solutions.

Solution : -

Since chlorine has higher reduction potential than bromine and iodine so it can displace them from their salt solutions.
$2 \mathrm{NaI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{I}_{2}$
$2 \mathrm{NaBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
20. What is the correct representation of reaction occurring when HCl is heated with MnO_{2} ?
a) $\mathrm{MnO}_{-}^{-}+5 \mathrm{Cl}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{MnO}_{2}+2 \mathrm{Cl}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
c) $2 \mathrm{MnO}_{2}+4 \mathrm{Cl}^{-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{4}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

Solution : -

Reaction involved is:
$\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
Assign the oxidation states we get:
$+4 \quad-1 \quad+2 \quad 0$
$\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}$
thus electron change in oxidation of Cl and reduction of Mn are same-2 electrons each
balance Cl
$\stackrel{+4}{\mathrm{MnO}_{2}}+4 \stackrel{-1}{4 \mathrm{HCl}} \xrightarrow{\rightarrow} \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}{ }^{0}$
Balance O by adding $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The reaction can be represented in the ionic form as:
$\mathrm{MnO}_{2}+4 \mathrm{Cl}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\mathrm{MnO}_{2}+2 \mathrm{Cl}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ is the correct representation of reaction occurring when HCl is heated with MnO_{2}
21. Most stable oxidation state of gold is
a) +1
b) +3
c) +2
d) +4

Solution:-

Gold exhibits, $1,+3$ oxidation states. But most stable oxidation state is +3
22. Which of the following is true about the given redox reaction?
$\mathrm{SnCl}_{2}+2 \mathrm{FeCl}_{3} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{FeCl}_{2}$
a) SnCl_{2} is oxidised and FeCl_{3} acts as oxidisi
c) SnCl_{2} is reduced and acts as oxidising agent.
d) FeCl_{3} is oxidised and SnCl_{2} acts as a oxidising agent.

Solution:-

Separating the oxidation and reduction reaction from the redox reaction:
$\mathrm{SnCl}_{2}+2 \mathrm{FeCl}_{3} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{FeCl}_{2}$
assigning the oxidation number on central atom (Sn and Fe) in each molecules by considering oxidation number of $\mathrm{Cl}=-1$ we get oxidation state as:
$+2+3+4+2$
$\mathrm{SnCl}_{2}+2 \mathrm{FeCl}_{3} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{FeCl}_{2}$
as the oxidation number of Sn changes from +2 to +4 as:
$\mathrm{SnCl}_{2} \rightarrow \mathrm{SnCl}_{2}$
its a oxidation reaction where SnCl_{2} gets oxidized and acts as reducing agent
Similarly, as the oxidation number of Fe changes from +3 to +2 as:
$\mathrm{FeCl}_{3} \rightarrow \mathrm{FeCl}_{2}$
its a reduction reaction where FeCl_{3} gets reduced and acts as oxidising agent.
Therefore SnCl 2 is oxidised and FeCl_{3} acts as oxidising agent.
23. The oxidation state of sulphur in the anions $\mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ follow the order
a) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
b) $\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
c) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$
d) $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$

Solution:-

$\mathrm{SO}_{3}{ }^{2-}$: oxidation state of ' S ' is +4
$\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$: oxidation state of ' S ' is +3 .
$\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$: oxidation state of ' S ' is +5 .
So, the order is $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$
24. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from
a) +2 to +7
b) +4 to +7
c) +7 to +2
d) +6 to +2

Solution :-

Reaction involved:
$\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Assign the oxidation number to Mn
Let the oxidation number of Mn be ' x '.
Oxidation number of $S O_{4}^{2}-=0=-2, \mathrm{~K}=+1$.
In $\mathrm{KMnO}_{4}: 1+\mathrm{x}+4 \times(-2)=0$
$\mathrm{x}+1-8=0$ or $\mathrm{x}=+7$
In $\mathrm{MnSO}_{4}: \mathrm{x}+(-2)=0$
$x=+2$ in the reaction thus:
$+7 \quad+2$
$\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from +7 to +2 .
25. Equivalent weight of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic medium ($\mathrm{M}=$ molar mass)
a) M
b) $M / 3$
c) $M / 5$
d) $\mathbf{M} / 10$

Solution : -

For one permanganate ion, n -factor is 5 . $\mathrm{But} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ has two permanganate ions. So its n -factror is 10 .
26. Consider the following reaction,

Select the incorrect statement.
a) It is not a disproportionation reaction.
b) It is intramolecular redox reaction.
c) OH^{-}is a reducing as well as oxidising agent
d) ${ }_{C H O}^{C H O}$ is a reducing as well as oxidising agent.

Solution : -

One CHO is oxidised to COO - and one CHO is reduced to $\mathrm{CH}_{2} \mathrm{OH}$.
Thus, it is not a disproportionation reaction. It is intramolecular redox reaction. Thus, options (a) and (b) are true and $\left.\right|_{C H O} ^{C H O}$ is reducing as well as oxidising agent. Thus, (d) is also true. Thus, (c) is incorrect.
27. Thiosulphate reacts differently with iodine and bromine in the reactions given below:
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 I_{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}$
Which of the following statements justifies the above dual behaviour of thiosulphate?
a) Bromine is a stronger oxidant than iodine
b) Bromine is a weaker oxidant than iodine.
c) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
d) Bromine undergoes oxidation and iodine undergoes reduction in these reactions.

Solution:-

Br_{2} oxidises S to a higher oxidation state (i.e.; $\stackrel{+2}{S}_{2} O_{3}^{2-} \rightarrow \stackrel{+2.5}{S_{4}} O_{6}^{2-}$) and I_{2} Oxidises S to a lower oxidation state (i.e.; $\stackrel{+2}{S_{2}} \mathrm{O}_{3}^{2-} \rightarrow \stackrel{+2.5}{S_{4}} \mathrm{O}_{6}^{2-}$) Thus, Br_{2} is stronger oxidising agent than I_{2}.
28. What mass of HNO_{3} is needed to convert 5 g of iodine into iodic acid according to the reaction? (at mass of $\mathrm{I}=$ 127 u)
a) 12.4 g
b) 24.8 g
c) 0.24 g
d) 49.6 g

Solution:-
$M_{\text {eq. }}$. of $\mathrm{HNO}_{3}=\mathrm{M}_{\text {eq. }}$. of I_{2}
$\frac{w}{\frac{63}{1}} \times 1000=\frac{5}{\frac{254}{10}} \times 1000$
$\mathrm{w}=12.4 \mathrm{~g}$
29. Experimentally it was found that a metal oxide has formula $M_{0.98} O$. Metal M, is present as M^{2+} and M^{3+} in its oxide. Fraction of the metal which exits as M^{3+} would be
a) 6.05%
b) 5.08%
c) 7.01%
d) 4.08%

Solution:-

Since the oxidation state of oxygen is -2 . So, for $\mathrm{M}_{0.98} 0$ to be neutral, the total oxidation state of $\mathrm{M}_{0.98}$ has to be +2 .
Let the fraction of M^{3+} be x .
then fraction of M^{2+} will be $(0.98-\mathrm{x})$.
now for the compound to be neutal,
$3 x+2(0.98-x)=2$
$3 x+1.96-2 x=2$
$x=2-1.96$
$x=0.04$
So, fraction of M^{3+} will be 4%.
30. The reaction is balanced if, $5 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{XClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{XCl}^{-}+\mathrm{YO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
a) $X=5, Y=2$
b) $\mathrm{X}=2, \mathrm{Y}=5$
c) $X=4, Y=10$
d) $\mathrm{X}=5, \mathrm{Y}=5$

Solution:-

The balanced reaction is as follows:
$5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{ClO}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Cl}^{-}+5 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Hence, X is 2 and Y is 5 .
31. Equivalent mass of N_{2} in the change $\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$ is
a) $28 / 6$
b) 28
c) $28 / 2$
d) $28 / 3$

Solution:-

$\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$
Oxidation no. of N in $\mathrm{N}_{2}=0$
Oxidation no. of N in $\mathrm{NH}_{3}=-3$
Valence factor $=$ no. of atoms \times change in oxidation no. $=2 \times|0-(-3)| \mid=6$
Molecular weight of $\mathrm{N}_{2}=28 \mathrm{~g}$
As we know that,
eq. $\mathrm{wt} .=\frac{\text { mol. } \mathrm{wt} .}{\text { valence factor }}$
\therefore Equivalent weight of N_{2} for the given change $=\frac{28}{6}$
Hence for the given change, the equivalent weigt of N_{2} will be $\frac{28}{6}$.
32. What will be the balanced equation in acidic medium for the given reaction?
$\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathrm{SO}_{2(g)} \rightarrow \mathrm{Cr}_{(a q)}^{3+}+\mathrm{SO}_{4(a q)}^{2-}$
a) $\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+2 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
b) $2 \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+4 \mathrm{H}_{(a q)}^{+} \rightarrow 4 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
c) $\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+14 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$
d) $\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+6 \mathrm{SO}_{2(g)}+7 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+6 \mathrm{SO}_{4(a q)}^{2-}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}$

Solution : -

$\mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{aq})}^{2-}+\mathrm{SO}_{2} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{SO}_{4}^{2-}$ (in acidic solution) Oxidation half equation:
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 e^{-}$
Reduction half equation:
$\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}--$ (ii)
Multiplying eqn. (i) by 3 and adding to eqn. (ii) we get
$\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+2 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
33. Identify disproportionation reaction.
a) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
c) $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
d) $\mathbf{2 \mathrm { NO } _ { 2 }}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$

Solution : -

In elements, in the free state each atom bears an oxidation number of zero. Oxidation number of oxygen in most of its compounds is -2 with two exceptions : in peroxides, oxidation number of oxygen is -1 and in superoxides, oxidation number of oxygen is $-1 / 2$
34. The oxidation number of " V " in $\mathrm{Rb} \mathrm{b}_{4} \mathrm{Na}\left[\mathrm{HV}_{10} \mathrm{O}_{28}\right]$ is
a) +3
b) +5
c) +7
d) +6

Solution:-

Oxidation number of $\mathrm{Rb}=+1$
Oxidation number of $\mathrm{Na}=+1$
Oxidation number of $\mathrm{H}=+1$
Let oxidation number of $\mathrm{V}=\mathrm{x}$
Oxidation number of $\mathrm{O}=-2$
$4 \times 1+1+1+10 x+28 \times(-2)=0$
$6+10 x-56=0$
$10 x=50$
$x=\frac{50}{10}=+5$
35. The atomic number of an element which shows the oxidation state of +3 is
a) 13
b) 32
c) 33
d) 17

Solution:-

For +3 oxidation state the outer orbital configuration has to be $\mathrm{ns}^{2} \mathrm{~ns}^{1}$ and that is possible for atomic number 13 . Al having atomic no. 13 shows +3 oxidation state
36. In the reaction $3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
a) Magnesium is reduced
b) Magnesium is oxidized
c) Nitrogen is oxidized
d) Nitrogen is reduced

Solution:-

In the given reaction oxidation state of Mg is changing from 0 to +2 while in nitrogen it is changing from 0 to -3 . So oxidation of Mg and reduction of nitrogen takes place.
37. The oxidation number of Cr in CrO_{5} which has the following structure is

a) +4
b) +5
c) +6
d) +3

Solution:-

It has four O atoms as peroxide with oxidation number $=-1$ and one O atom with oxidation number $=-2$.
Hence, $x+4(-1)+1(-2)=0$ or $x=+6$
38. In the reaction $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}{ }^{2-}$ the number of H^{+}ions involved is
a) 2
b) 6
c) 8
d) 16
39. Consider the following reaction:
$\mathrm{HCHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]+3 \mathrm{H}^{-} \rightarrow 2 \mathrm{Ag}+\mathrm{HCOO}^{-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
Which of the following statements regarding oxidation and reduction is correct?
a) HCHO is oxidised to HCOO^{-}and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is reduced to Ag
b) HCHO is reduced to HCOO^{-}and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is oxidised to Ag .
c) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is reduced to Ag while OH^{-}is oxidised to HCOO^{-}.
d) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is oxidised to NH 3 while HCHO is reduced to $\mathrm{H}_{2} \mathrm{O}$.

Solution : -

Separating the oxidation and reduction reaction from the redox reaction:
$\mathrm{HCHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+3 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Ag}+\mathrm{HCOO}^{-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
assigning the oxidation number on central atom (C and Ag) in each molecules by considering oxidation number of $\mathrm{H}=+1, \mathrm{O}=-2, \mathrm{NH}_{3}=0$ we get oxidation state as:
$0 \quad+1 \quad 0 \quad+2$
$\mathrm{HCHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+3 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Ag}+\mathrm{HCOO}^{-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
as the oxidation number of C changes from 0 to +2 as:
$\mathrm{HCHO} \rightarrow \mathrm{HCOO}^{-}$
its a oxidation reaction where C gets oxidized
Similarly, as the oxidation number of Ag changes from +1 to 0 as:
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \rightarrow \mathrm{Ag}$
its a reduction reaction where Ag gets reduced.
40. Which of the following reactions does not involve the change in oxidation state of metal?
a) $\mathrm{VO}^{-2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{3}$
b) $K \rightarrow K^{+}$
c) $\mathrm{Cu}^{2+} \rightarrow \mathrm{Cus}$
d) $\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}$

Solution:-

In $\mathrm{Cu}^{2+} \rightarrow$ Cus, Cu is in +2 oxidation state in both reactant and product.
41. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:
Assertion: The only way to get F_{2} from F^{-}is to oxidise electrolytically.
Reason: The recovery of halogens from their halides requires an oxidation process.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion.
c) If assertion is true but reason is false.
d) If both assertion and reason are false.

Solution : -

The best method to get halogens from their halides is an Electrolytic method as it is safe and prevents an explosion in case of fluorine. The conversion of halide to halogens is an oxidation process in which the oxidation state of halogen changes from -1 to 0 . Hence it requires oxidation process.
42. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
Assertion: In titrations involving potassium permanganate no indicator is used.
Reason: MnO_{4}^{-}acts as the self-indicator.
a) If both assertion and reason are true and reason is the correct explanation of assertion.
b) If both assertion and reason are true but reason is not the correct explanation of assertion
c) If assertion is true but reason is false
d) If both assertion and reason are false.

Solution:-

KMnO_{4} or MnO_{4}^{-}acts as its own indicator so during titrations involving KMnO_{4} no indicator is added from outside. KMnO_{4} is dark purple in +7 oxidation state and on reaching end point its color changes to pale pink color. Therefore, Assertion and reason both statements are correct with reason being explaining assertion.
43. 0.5 g mixture of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ and some sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ with some impurities requires 40 ml of 0.1 M NaOH for complete neutralization and 6 ml of $0.2 \mathrm{M} \mathrm{KMnO}_{4}$ for complete oxidation. Calculate the \% of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the mixture
a) 90%
b) 26.8%
c) 40%
d) 50%

Solution : -

No. of milli equivalents of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{No}$. of milli equivalents of $\mathrm{NaOH}=4 \mathrm{No}$. of milli equivalents of $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}+$ $\mathrm{Na}_{20} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{No}$. of milli equivalents of $\mathrm{KMnO}_{4}=6 \times 0.2 \times 5=6$
Milli equivalent of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2$
Weight of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2 \times 10^{-3} \times 67=0.134 \mathrm{~g}$
$\% \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{0.134}{0.5} \times 100=26.8$
44. In the reaction, $\mathrm{I}_{2}+2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KIO}_{3}+\mathrm{Cl}_{2}$
i) lodine is oxidised ii) Chlorine is reduced iii) lodine displaces chlorine iv) KClO is decomposed The correct combination is
a) Only i \& iv are correct
b) Only iii \& iv are correct
c) i , ii, iii are correct
d) All are correct

Solution:-

1) In the above reaction $I_{2}^{0} \longrightarrow I^{+5} \Rightarrow$ oxidation
2) $\mathrm{Cl}^{+5} \longrightarrow C l_{2}^{0} \Rightarrow$ reduction
3) Lower halogen displaces higher halogen.
45. Oxidation number of chlorine in chlorine heptaoxide is
a) +1
b) +4
c) +6
d) +7

Solution:-
$\mathrm{Cl}_{2} \mathrm{O}_{7} ; 2 \mathrm{x}-14=0 ; \mathrm{x}=+7$
46. Which change occurs when lead monoxide is converted into lead nitrate?
a) Oxidation
b) Reduction
c) Neither oxidation nor reduction
d) Both oxidation and reduction

Solution : -

$\stackrel{+2}{\mathrm{~Pb} O} \rightarrow \stackrel{+2}{\mathrm{~Pb}}\left(\mathrm{NO}_{3}\right)_{2}$
Neither oxidation nor reduction
47. Write the following ions in order of decreasing capacity to accept electrons. $\mathrm{H}^{+}, \mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Ag}^{+}, \mathrm{Zn}^{2+}$
a) $\mathrm{Ag}^{+}>\mathrm{H}^{+}>\mathrm{Zn}^{\mathbf{2 +}}>\mathbf{M g}^{2+}>\mathrm{K}^{+}$
b) $\mathrm{H}^{+}>\mathrm{Zn}^{2+}>\mathrm{Mg}^{2+}>\mathrm{K}^{+}>\mathrm{Ag}^{+}$
c) $\mathrm{K}^{+}>\mathrm{Mg}^{2+}>\mathrm{Zn}^{2+}>\mathrm{H}^{+}>\mathrm{Ag}^{+}$
d) $\mathrm{Mg}^{2+}>\mathrm{Zn}^{2+}>\mathrm{K}^{+}>\mathrm{Ag}^{+}>\mathrm{H}^{+}$

Solution : -

Based on electrochemical series, elements can be arranged in order of decreasing capacity to accept electrons i.e decreasing reduction potentials.
$\mathrm{Ag}^{+}>\mathrm{H}^{+}>\mathrm{Zn}^{2+}>\mathrm{Mg}^{2+}>\mathrm{K}^{+}$where reduction potential of Ag^{+}is positive, for H^{+}is zero and others have negative E^{0}
Alkali metals are most electropositive followed by alkaline earth metals, thus have most negative reduction potential and least capacity to accept electrons.
48. Oxidation number of Cr in CrO_{5} is:
a) +5
b) -3
c) +6
d) +7

Solution :-

CrO_{5} has one $\mathrm{Cr}=\mathrm{O}$ double bond. The oxygen atom of this double bond has oxidation number of -2 . The remaining 4 oxygen atoms are part of peroxide linkages. The oxygen atom of peroxide linkage has oxidation number of -1 . Let, X be the oxidation number of Cr
$X+(-2)+4(-1)=0$
$X-2-4=0$
$X=+6$
Hence, the oxidation number of $\mathrm{Cr}=+6$
49. In the conversion of Br_{2} to BrO_{3}^{-}, the oxidation state of bromine changes from
a) 0 to +5
b) -1 to +5
c) 0 to - 3
d) +2 to +5

Solution :-

$\stackrel{0}{B} r_{2} \longrightarrow \stackrel{+5}{\mathrm{Br}} \mathrm{O}_{3}^{-}$
50. Indicate whether the following conversions represent an oxidation, a reduction or none (neither oxidation nor reduction).
(i) HClO_{3} to HClO_{4}
(ii) NH_{4}^{+}to NH_{3}
(iii) NO_{2} to $\mathrm{N}_{2} \mathrm{O}_{4}$
(iv) HSO_{3}^{-}to $\mathrm{SO}^{2-}{ }_{4}$
(v) $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{H}_{2} \mathrm{O}$
a)

(i)
OX
$\mathrm{c})$

(ii)
(iii) (iv) (v)
OxidationReduction NoneNoneOxidation
c)
(i)
(ii)
(iii)
(iv) (v)
b)

ReductionOxidationReductionNoneReduction
d)

(i)	(ii)	(iii)	(iv)	(v)

OxidationReductionNoneReductionReduction

Solution : -

Oxidation is loss of electron and reduction is the gain of electron. Thereby assigning the oxidation number on central atom in each molecule for each conversion will determine oxidation or reduction process. Considering oxidation number of $\mathrm{H}=+1, \mathrm{O}=-2$ we get oxidation state as:
(i) Oxidation number of Cl in $\mathrm{HClO}_{3} \rightarrow \mathrm{HClO}_{4}$

```
+5 +7
```

$\mathrm{HClO}_{3} \rightarrow \mathrm{HClO}_{4}$
Oxidation number of Cl changes from +5 to +7 , by losing two electron is oxidation process.
(ii) Oxidation number of N in $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}$
-3 -3
$\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}$
Oxidation number of N does not change. Thus its neither oxidation nor reduction.
(iii) Oxidation number of N in $\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
+4 +4
$\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
Oxidation number of N does not change. Thus its neither oxidation nor reduction.
(iv)Oxidation number of S in $\mathrm{HSO}_{3} \rightarrow \mathrm{SSO}_{4}^{2}-$
$+4^{-}+6$
$\mathrm{HSO}_{3} \rightarrow \mathrm{SO}_{4}{ }^{2-}$
Oxidation number of S changes from +4 to +6 , by losing two electron is oxidation process.
(v) Oxidation number of S in $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$-1 \quad-2$
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Oxidation number of O changes from -1 to -2 , by gaining one electron is reduction process.
Therefore: (i) Oxidation(ii) None(iii) None(iv) Oxidation(v) Reduction

